
Faculty of Electrical Engineering – Computer Science – Mathematics
Heinz Nixdorf Institute and Department of Computer Science

Software Engineering Group
Zukunftsmeile 1
33102 Paderborn

Quality Analysis Lab (QuAL):
Software Design Description

and Developer Guide
Version 1.1

by
Sebastian Lehrig1

Zukunftsmeile 1
33098 Paderborn

Paderborn, May 2016

1The research leading to these results has received funding from the EU Seventh Framework
Programme (FP7/2007-2013) under grant no 317704 (CloudScale).

Contents

1 Introduction 2
1.1 Running Example: The Alice&Bob System 2
1.2 Overview of the Quality Analysis Lab 5

1.2.1 Data Specification: Metrics & Measurements 5
1.2.2 Data Flow: Metric Measurements in Palladio Analyses . . . 6

1.3 Analyses: Structural Viewpoint of Dependencies 8
1.4 Analyses: Interaction Viewpoint 9
1.5 Document Structure . 11

2 Metric Specification Framework 14
2.1 Meta Classes of the Metric Specification Framework 14
2.2 Library of Common Metric Descriptions 16
2.3 Custom Metric Descriptions . 18

3 Measurement Framework 19
3.1 Measure Providers and Measurements 19
3.2 Measurement Sources and Listeners 20
3.3 Custom Measures . 20

4 Analyzer Framework 22

5 Probe Framework 23
5.1 Probes and Calculators . 23

5.1.1 Probe Types . 25
5.1.2 Calculator Types . 27

5.2 Using Probes and Calculators . 28
5.2.1 Using an “Example Take Current Time Probe” 28
5.2.2 Using a “Response Time Calculator” 29
5.2.3 Further Examples on Using Probes and Calculators 30

5.3 Custom Probes and Calculators . 30
5.3.1 Creating an “Example Take Current Time Probe” 30
5.3.2 Further Examples on Creating Probes and Calculators . . . 30

6 Kieker Framework 32

7 Recorder Framework 33
7.1 Recorders and Recorder Configurations 33

7.1.1 Recorders . 33

ii

Contents

7.1.2 Recorder Configurations . 35
7.2 Example: the Experiment Data Persistency & Presentation (EDP2)

Recorder . 35
7.3 Custom Recorders and Extension Points 36

8 Simulation Instrumentation using Monitor Repository Models 37
8.1 Monitor Repository Model . 37
8.2 Extending the Monitor Repository Model 38

8.2.1 Adding Statistical Characterizations 39
8.3 Adding Custom Processing Types 39

9 Extensible Monitoring in SimuLizar 43
9.1 Extending Measurements recorded by the Probe Framework 43
9.2 Dynamic Extension of Measurements with a Model Observer . . . 44

10 UI Framework 46

11 Experiment Automation Framework 47
11.1 The Experiment Automation Workflow 47
11.2 Adding Support for Custom Analyzers 47
11.3 Hooking-in to the Experiment Automation Workflow 49

Bibliography 50

1

1 Introduction

This document is a software design description of the Quality Analysis Lab (QuAL),
a framework for conducting, storing, and visualizing metric measurements in Pal-
ladio [3] analyses (e.g., conducted by simulators or performance prototypes). The
main target group for this document are Palladio developers who want to use
or to extend QuAL, e.g., by self-defined metrics and custom visualizations. For
this purpose, this document covers a general overview of QuAL as well as detailed
descriptions of each lab component.

In this introduction, we first introduce a simple running example to illustrate the
purpose of QuAL. Afterwards, we give a high-level overview of QuAL in Sec. 1.2. We
describe structural and interaction viewpoints of Palladio analyses with QuAL in
Sec. 1.3 and Sec. 1.4, respectively. Finally, we outline the rest of this document
(where we focus on using and extending QuAL) in Sec. 1.5.

1.1 Running Example: The Alice&Bob System

As running example, we use the Alice&Bob system as illustrated in Fig. 1.1. This
system consists of two Glassfish servers: GlassfishA allocates the Alice component
that provides the interface IAlice with the operation callBob() and GlassfishB allocates
the Bob component that provides the interface IBob with the operation sayHello().
The IAlice interface is provided to a user who can invoke its operation through
a client-side technology like a browser. This invocation can be received by a

GlassfishB ServerGlassfishA Server

BobAlice

User

CPU
Scheduling: Processor Sharing
Processing Rate: 100 Work Units/Sec.

Open Workload Usage Scenario
Interarrival Time: Exp(1.0)

+ callBob()

IAlice

+ sayHello()

IBob Resource Demands
CPU Demand:
DoublePMF[(20;0.2)(30;0.3)(50;0.5)]

Figure 1.1: Alice&Bob System

2

1.1 Running Example: The Alice&Bob System

component on the server side – in our case, by the Alice component implementing
the IAlice interface. Furthermore, we annotated performance-relevant information
to the Alice&Bob system using yellow sticky notes. These sticky notes state that
(1) users arrive the system with an expected interarrival time of 1.0, (2) the CPU
of GlassfishB follows a processor sharing (round-robin) scheduling strategy while
processing with 100 work units per seconds, and (3) calls to sayHello() cause a CPU
demand as specified by the given probability mass function. The latter specifies
that 20 CPU work units are demanded in 20% of the cases, 30 CPU work units
are demanded in 30% of the cases, and 50 CPU work units are demanded in 50%
of the cases.

Assume we want to analyze systems like the Alice&Bob system using an ana-
lyzer. Such an analyzer can, for instance, allow us to analyze the performance of
a system in terms of response times and CPU utilization. For example, we could
be interested in the response time of the callBob operation as observed by the user.

QuAL enables us to specify such metrics (e.g., “response time”) and to record
and visualize their measurements (e.g., “response time measured at callBob was
2.0 seconds”). In Fig. 1.2 and 1.3, we provide some example visualizations for
the Alice&Bob system: Fig. 1.2 shows response times for callBob() over time in an
XY plot and Fig. 1.3 a corresponding histogram. Note that such results require
to take a series of measuring values that contribute to a full measurement. For
example, the XY plot of Fig. 1.2 shows several response time measuring values,
taken at different points in time.

Because QuAL heavily uses such metrics and measurements, QuAL comes with
mature and precise concepts to specify these in a type-safe way (see Figure 1.4).

The upper part of Fig. 1.4 shows that a measurement consists of a measuring
type and a non-empty set of measuring values. The former – measuring types –
consist of a measuring metric that states what to measure (e.g., “response time”)
and a measuring point that states where to measure (e.g., “callBob”). The latter
– measuring values – measure such a measuring type in terms of a value (e.g., “2”)
typed by a unit (e.g., “seconds”) and taken at a certain time (e.g., “t0”). As ex-
emplified above, performance engineers interested in response time typically want
to investigate a series of response times (distributed over time) and not only one
such response time measuring value. Therefore, the concept of a “measurement”
allows to include a series of measuring values at different points in time.

The lower part of Fig. 1.4 shows that (1) metric descriptions characterize metric
properties to which measuring metrics and measuring values have to conform and
(2) measures type measuring values. Regarding (1), metric descriptions specify
properties such as the name of a metric (e.g., “response time”), its capture type
(e.g., “real”), its scale (e.g., “ratio”), its unit (e.g., “seconds”), etc. Regarding
(2), measures specify the value type (e.g., “Double”) and the quantity (e.g., “Du-
ration”) for which measuring values have to provide a fitting instance (e.g., “2.0
seconds”).

3

1. Introduction

Figure 1.2: Response Times XY Plot for callBob()

Figure 1.3: Response Time Histogram for callBob()

4

1.2 Overview of the Quality Analysis Lab

«is instance of»

response time measured at callBob was 2.0 seconds (at t0)

measuring metric

measurement

measuring point

measuring type

(Double, Duration)

measure

quantity

unit

(response time, real, ratio, seconds, ...)

«conforms to»

measuring value

value

capture
type

name value
type

scale

metric description

«conforms to»

unit

measuring values
at different points

in time

point in time

Figure 1.4: Measurements of Palladio’s Quality Analysis Lab

1.2 Overview of the Quality Analysis Lab

As stated in the previous section, QuAL enables us to specify metrics and to record
and visualize their measurements. Figure 1.5 gives a high-level overview of the
corresponding data flow through QuAL. The lower part illustrates the parts of
QuAL that are responsible for data specification while the upper part illustrates
how QuAL uses this data for metric measurements in Palladio analyses.

1.2.1 Data Specification: Metrics & Measurements

The data specification of QuAL (lower part of Fig. 1.5) includes the following main
components:

Metric Specification Framework: Metric Descriptions Metric descriptions char-
acterize metrics to be measured (cf., Fig. 1.4). For example, a point in time
metric represents the point in time when a measurement value is taken and
can be measured with real numbers (capture type) and in seconds (unit).
Another example is the response time metric of the Alice&Bob system: the
response time metric represents the duration between start of an operation
call and its end; it can be measured with real numbers (capture type) and
in seconds (unit).

In Palladio, metric descriptions are realized in the “Metric Specification
Framework” (Chap. 2). Metric Specification Framework comes with a library
of commonly used metrics. Moreover, it allows to specify custom metrics.

Measurement Framework: Measurements Measurements specify data objects for
storing measuring values at a given measuring point; typed by a correspond-
ing metric description. For example, “12 seconds wall clock time of an analy-
sis” is a valid measuring value/point combination corresponding to the point

5

1. Introduction

Data Flow: Metric Measurements in Palladio Analyses ()

Data Specification: Metrics & Measurements

UI Framework

Recorder FrameworkKieker FrameworkProbe Framework

Probes
(e.g., current

time, CPU
states, …)

Pipes & Filters
(e.g., JMS pipes,

monitoring filters, ...)

Calculators
(e.g., res-

ponse time,
identity, …)

Recorders
(e.g., EDP2, Sensor-

Framework, …)

(Live) Visualization
(e.g., pie charts, x-y

graphs, ...)

Metric Specification Framework

Metrics
(e.g., point in time, ...)

Measurement Framework

Measurements

(e.g., 12 seconds, ...)

measurements are
typed by metrics

Experiment Automation Framework

Experiments
(e.g., repeat Analyzer run 10 times for
statistical significance & create report)

Analyzer
Framework

Analyzer
(e.g., SimuCom,

SimuLizar,
ProtoCom, ...)

: Dataflow

Figure 1.5: Overview of Palladio’s Quality Analysis Lab

in time metric. An example measurement for the response time metric of
the Alice&Bob system is “12 seconds for a callBob operation call”.

In Palladio, measurements are realized in the “Measurement Framework”
(Chap. 3). Measurement Framework provides a library to measure basic
measurements (one value) or measurement sets (set of basic measurements).
These two types of measurements should generically cover all measurement
needs, thus, the framework does not provide extension points for custom
measurements.

1.2.2 Data Flow: Metric Measurements in Palladio Analyses

The data flow of metrics and measurements within Palladio analyses (upper part
of Fig. 1.5) involves the following main components:

Analyzer Framework An analyzer runs the environment to be measured (e.g., a

6

1.2 Overview of the Quality Analysis Lab

simulation or a performance prototype of the Alice&Bob system). Cur-
rently, typical Palladio simulators are SimuCom [2], SimuLizar [1], and
EventSim [7]; a typical performance prototype is provided by ProtoCom [2,
6].

In Palladio, analyzers are realized in the “Analyzer Framework” (Chap. 4).
Analyzer Framework provides interfaces and abstract classes serving as a
starting point for custom analyzers. The above mentioned concrete analyzers
are examples for such custom analyzers.

Probe Framework

Probes Probes know how to measure values (e.g., “current analysis time”
or “CPU state/queue size”) for a given analyzer, i.e., they come with a
suitable, analyzer-specific implementation. Once implemented, probes
can be placed all over the analyzer to steadily probe.

In Palladio, probes are realized in the “Probe Framework” (Chap. 5).
Probe Framework comes with an analyzer-independent library of ab-
stract probes. These abstract probes allow to easily specify custom,
analyzer-specific probes.

Calculators Calculators attach themselves to a set of probes to enrich their
measurements by the investigated metric (e.g, response time) and the
measuring point (e.g., callBob operation). Calculators can then be used
further, e.g., for visualization or recording. Therefore, calculators spec-
ify which measurements are of interest outside from the analyzer. For
example, the response time calculator provides response time measure-
ments that are calculated based on current time probes for start and
end time (response time = end − start time). Another example is the
identity calculator that directly lets probe measurements pass through,
without changing the measured value.

In Palladio, calculators are part of the “Probe Framework” (due to their
strong dependency to probes; see Chap. 5). Probe Framework comes
with a factory for commonly used calculators. Moreover, it allows to
add custom calculators.

Kieker Framework: Pipes & Filters Pipes and filters allow to transfer and filter
measurements of calculators to data sinks such as recorders and live visual-
ization. For example, measurements can be transferred via JMS to dedicated
servers for measurement storage.

In Palladio, pipes and filters are realized via the push-based, third-party
framework “Kieker” [4] (elements are pushed through the pipeline, not pulled;
see Chap. 6). Kieker allows for an easy creation of custom filters.

7

1. Introduction

Recorder Framework: Recorders Recorders allow measurements received via the
pipes & filters framework to be stored, e.g., in a database, an XML file, or
a binary file.

In Palladio, recorders are realized in the “Recorder Framework” (Chap. 7),
allowing to specify custom recorders. Currently, two of such custom recorders
exist: “SensorFramework” and “Experiment Data Persistency & Presenta-
tion (EDP2)”. Note that EDP2 is the preferred recorder and will fully
replace SensorFramework soon (this document is currently the main docu-
mentation of EDP2).

UI Framework: (Live) Visualization A visualization allows to present measure-
ments in graphical form. For example, CPU utilization can be visualized
via a pie chart or the response times of the Alice&Bob system in a x-y
graph. Such a visualization can either be based on recorded measurements
(recorders provide data input) or based on live monitoring data (pipes &
filters framework provides data input).

In Palladio, visualization is realized in the “UI Framework” (Chap. 10). For
recorder-based visualization, the UI framework provides a pull-based pipes
and filters framework to request data from recorders. For live visualization,
we are currently developing a suitable component (not released yet). Finally,
note that UI Framework is currently part of EDP2.

Experiment Automation: Experiments Experiments allow to conduct a series of
analyzer runs and to aggregate recorded measurements to new measurements
(so-called experiment reports). For example, an experiment can repeat an
analyzer run for ten times. The variance over these runs can be reported,
indicating the statistical significance of these analyzer runs. Another exam-
ple is to conduct the same analysis using different analyzers and to report
on the analysis time per analyzer.

In Palladio, experiments are realized in the “Experiment Automation Frame-
work” (Chap. 11). Experiment Automation Framework allows to specify
analyzer configurations, to run analyzers, and to store experiment reports
based on investigating analyzer measurements within recorders. In particu-
lar, the framework provides extension points for adding custom analyzers.

1.3 Analyses: Structural Viewpoint of Dependencies

The analysis-relevant part of QuAL has the dependencies shown in the component
diagram in Fig. 1.6. Such dependencies are needed for the initialization and con-
figuration of the measurement pipeline, later on used for sending measurements
from analyzers to recorders.

Analyzer is the main component, allowing quality engineers to run analyses. For
such analyses, Analyzer uses the Probe Framework to equip itself with probes and

8

1.4 Analyses: Interaction Viewpoint

Analyzer

+ analyze()

IAnalyzer

Probe
Framework

Recorder
Framework

EDP2
Sensor

Framework
SimuCom SimuLizar ProtoCom

Quality Engineer

+ createNewProbe(…) : Probe
+ createNewCalculator(String name, Probe... probes) : Calculator

ICalculatorFactory

+ createNewRecorder(String name) : Recorder

IRecorderFactory

Kieker
Framework

+ createNewAnalysisController(...) :
AnalysisController

IKiekerAnalysis

IKiekerAnalysisPlugin

Allows to define Kieker elements
such as sources (e.g., Calculators)
and sinks (e.g., Recorders).

An Analysis-
Controller allows to
connect Kieker
elements by pipes.

Figure 1.6: Component Dependencies of QuAL

calculators as well as the Recorder Framework to receive a suitable recorder for
measurement storage. To connect calculators and the recorder, Analyzer uses the
Kieker Framework.

Typical examples for concrete Analyzer components are SimuCom, SimuLizar, and
EventSim. Typical examples for recorders are EDP2 and SensorFramework.

Note that, besides the illustrated dependencies, each component also depends
on the Metric Specification Framework and the Measurement Framework. We did not
visualize this dependency for clarity.

1.4 Analyses: Interaction Viewpoint

Analyses in QuAL follow the interactions shown in the sequence diagrams in Fig. 1.7,
Fig. 1.8, Fig. 1.9, and Fig. 1.10.

Figure 1.7 illustrates the general structure of an analysis run: it consists of an
initialization, a running, and a finishing phase. Each of these phases is described
in separation in one of the other sequence diagram, respectively.

Figure 1.8 illustrates the initialization phase of an analysis. In this phase, an
Analyzer first creates suitable probe and calculator objects where the latter are
directly linked to the former. For example, an Analyzer creates probe objects for
measuring the point in time when a system entry call started (startProbe) and when
it finished (endProbe).1 A corresponding calculator object that measures response
time (responseTimeCalculator) links to these two probes. Secondly, an Analyzer can
create a recorder object (e.g., an EDP2 recorder object edp2Recorder) responsible
for recording measurements received from calculators. Therefore, an Analyzer has
to explicitly connect calculators to recorders using the Kieker Framework.

Figure 1.9 illustrates the running phase of an analysis. In this phase, the Analyzer

1In this example, we use probes of type “basic invoked”. These probes are explicitly invoked
by the control flow of the analyzer (in contrast to reacting on an event). Chapter 5 provides
more details on different probe types and their use-cases.

9

1. Introduction

Analyzer

Quality Engineer

analyze()

sd Analysis

ref
Initialize Analysis

ref
Run Analysis

ref
Finish Analysis

Figure 1.7: Sequence Diagram: Analysis

analyzes a system under study. As the figure shows, for example system entry calls
can be analyzed. For instance, the callBob operation of the Alice&Bob system can
be called. System entry calls can cause two events: the beginning of a call and
the end of a call. To react on these events, the Analyzer provides the two call-back
methods beginSystemEntryCallSimulation and endSystemEntryCallSimulation.

The beginSystemEntryCallSimulation method invokes takeMeasurement on the start-

Probe object to trigger the probe. Such a trigger forces the probe to take a point-in-
time measurement (doMeasure method) and to inform its observers, i.e., registered
calculators, that a new measurement is available (newMeasurementAvailable method).
In the case of the start probe, the registered responseTimeCalculator object puts the
received measurement in its memory because it has to wait for the point-in-time
measurement of the end probe to calculate the overall response time.

The endSystemEntryCallSimulation method functions similarly but uses the stop-

Probe object instead of the startProbe object. The stopProbeObject also sends its
measurement to the responseTimeCalculator object once triggered. The responseTime-

Calculator object can now calculate the overall response time by using its calculate

method. In particular, this method can calculate the response time based on
the previously stored point-in-time measurement (for the starting time) and the
recently received point-in-time measurement (for the ending time). After this cal-
culation, the calculator informs its observers that a newly calculated measurement
is available (newMeasurementAvailable method). For instance, the edp2Recorder ob-
ject could be registered at the calculator such that it stores received data in a file
(writeData method).

Figure 1.10 illustrates the finishing phase of an analysis. In this phase, no more

10

1.5 Document Structure

Analyzer
Probe

Framework

createNewProbe(...)

startProbe

createNewProbe(...)

stopProbe

createNewCalculator(
 ‘‘Response Time of SystemEntryCall“,
 {startProbe, stopProbe})

responseTimeCalculator

sd Initialize Analysis

startProbe :
BasicInvokedProbe

«create»

stopProbe :
BasicInvokedProbe

«create»

responseTimeCalculator :
ResponseTimeCalculator

«create»

Recorder
Framework

edp2Recorder : Recorder
«create»

createNewRecorder(‘‘EDP2“)

edp2Recorder

Kieker
Frameworkconnect(

 responseTimeCalculator,
 edp2Recorder)

Figure 1.8: Sequence Diagram: Initialization of the Analysis

analyses are conducted and open input streams are closed. Therefore, the Analyzer

invokes the finish method of Probe Framework that informs all calculators about
the end of the analysis. In particular, all calculators inform registered observers
about being unregistered (preUnregister method). For example, the edp2Recorder is
informed about this event such that it can flush the recorded measurement data
into its repository (e.g., a file or a database).

After the finishing phase, the analysis ends. All measurement data that was of
interest should have been stored in the registered recorders or directly have been
visualized by the live visualization component. In case the measurements have
been stored by recorders, quality engineers can also investigate these measure-
ments using the other visualization components of the UI Framework.

1.5 Document Structure

After giving a brief introduction to Palladio’s Quality Analysis Lab, we next focus
on concrete code examples illustrating how to use and extend it. We structure

11

1. Introduction

Analyzer

sd Run Analysis

beginSystemEntryCallSimulation()

startProbe :
BasicInvokedProbe

takeMeasurement(...)

doMeasure(…)

responseTimeCalculator :
ResponseTimeCalculator

newMeasurementAvailable(measurement)

putInMemory()

stopProbe :
BasicInvokedProbe

endSystemEntryCallSimulation()

takeMeasurement(...)

doMeasure(…)

newMeasurementAvailable(measurement)

calculate()

newMeasurementAvailable(measurement)

writeData()

edp2Recorder : Recorder

As soon as Kieker support is
available, Kieker will mediate this
communication.

Figure 1.9: Sequence Diagram: Run of the Analysis

12

1.5 Document Structure

Analyzer
Probe

Framework

finish()

sd Finish Analysis

preUnregister()

flush()

edp2Recorder : Recorder

As soon as Kieker support is
available, Kieker will mediate
this communication.

Figure 1.10: Sequence Diagram: Finishing the Analysis

our illustrations along the different components of the lab:

Chapter 2 covers the Metric Specification Framework. Here, we show how new
metrics can be specified to be used by the lab.

Chapter 3 covers the architecture of the Measurement Framework. We commonly
do not expect extension scenarios here.

Chapter 5 covers the Probe Framework. We describe the available library of
probes, how it can be extended, and how probes can be used by analyzers.

Chapter 6 covers the Kieker Framework. We give a brief description of this frame-
work and show how we use it within Palladio.

Chapter 7 covers the Recorder Framework. We briefly outline EDP2 here but
commonly do not expect extension scenarios.

Chapter 10 covers the UI Framework. We describe how measurements recorded
by EDP2 can be visualized and give an outlook on live visualization. We also
describe the most typical extension scenario: adding a custom visualization
(e.g., a new kind of graph).

Chapter 11 covers the Experiment Automation Framework. We describe the core
concepts of the framework and show how custom analyzers can be added.

13

2 Metric Specification Framework

In this chapter, we describe the Metric Specification Framework of QuAL. The
framework is build around a meta model for specifying metric descriptions (lower-
left part of Fig. 1.4). This meta model allowed us to create a library of common
metric descriptions. The meta model can also be used by Palladio developers who
want to provide custom metric descriptions. Such metric descriptions themselves
are tightly integrated in QuAL and occur all over this document (e.g., for typing
and visualizing measurements).

This chapter covers the meta classes of the Metric Specification Framework
metamodel (Sec. 2.1), our library of commonly used metric descriptions we speci-
fied as an instance of this metamodel (Sec. 2.2), and shows how Palladio developers
can specify custom metric descriptions (Sec. 2.3).

2.1 Meta Classes of the Metric Specification Framework

In Fig. 2.1, we illustrate the meta classes of the Metric Specification Framework
meta model.

MetricDescriptionRepository serves as the root node of the meta model. Such a
repository contains the (unordered) set of metric descriptions to be specified.

A MetricDescription characterizes a metric, thus, being the core concept of the
Metric Specification Framework meta model. MetricDescription inherits from De-

scription such that metric descriptions can textually give the name and a descrip-
tion for the referred metric. Furthermore, we distinguish two types of metric
descriptions: (1) BaseMetricDescription and (2) MetricSetDescription.

The first type (BaseMetricDescription) allows to specify typical characteristics
of metrics. These characteristics are capture type, data type, and scale; each
typed by a dedicated enumeration. Moreover, base metric descriptions can either
be a TextualBaseMetricDescription or a NumericalBaseMetricDescription. The former
(TextualBaseMetricDescription) is used for metrics that reference a (set of) string
identifiers. For example, a “component names metric” could list the available
components of a system (“Alice” and “Bob” in the case of the Alice&Bob Sys-
tem). The latter (NumericalBaseMetricDescription) is used for metrics that can be
expressed as numbers and in a given unit. For example, response time is a metric
that can be expressed as a real number and in seconds.

The second type (MetricSetDescription) composes an ordered list of subsumed
metric descriptions using the composite pattern. Therefore, such metric set de-
scriptions can contain basic metric descriptions as well as other metric set descrip-
tions. A typical example for a metric set description is a “response time tuple”

14

2.1 Meta Classes of the Metric Specification Framework

Figure 2.1: Meta Classes of the Metric Specification Framework 15

2. Metric Specification Framework

that specifies a “(point in time, response time)”-tuple, i.e., the end of an operation
call plus the response time. For instance, such tuples are needed when response
times are investigated over time like in Fig. 1.2.

For details about the illustrated meta classes, we directly refer to the Metric
Specification Framework meta model. We specified this meta model in ECore and
annotated the documentation directly1.

2.2 Library of Common Metric Descriptions

Fig. 2.2 shows the tree editor for the Metric Specification Framework meta model
with our library of common metric descriptions opened2. Our library of common
metric descriptions includes the following metric descriptions:

• Classical performance metrics such as response time, throughput, and re-
source utilization. These metrics were used in Palladio even before we started
developing QuAL; we simply integrated these into our library.

• Novel cloud computing metric descriptions for capacity, scalability, elasticity,
and efficiency metrics such as user capacity, scalability range, number of SLO
violations, and marginal cost. We added these metric descriptions during
developing QuAL to illustrate its new capabilities. Moreover, we systemati-
cally derived these metric descriptions in the context of the CloudScale EU
project3.

Each metric description comes with a set of pre-configured characteristics that
can be investigated via the properties view (see lower part of Fig. 2.2). For exam-
ple, for the response time metric description, the “textual description” character-
istic describes that “This measure represents the response time, e.g., to store the
response time of operation calls.”. Therefore, we directly refer to such character-
istics for a full documentation of each metric description.

Palladio developers who want to use our library of metric descriptions within
source code need to load the library’s model file and to select the metric description
of interest by referring to its identifier. To ease this task, we additionally provide
public constants for each metric description that can directly be used within source
code4.

1Metric Specification Framework meta model: https://svnserver.informatik.kit.edu/i43/

svn/code/MetricSpecification/trunk/org.palladiosimulator.metricspec/model
2Library of common metric descriptions: https://svnserver.informatik.kit.edu/i43/

svn/code/MetricSpecification/trunk/org.palladiosimulator.metricspec.resources/

models/commonMetrics.metricspec
3CloudScale metrics: http://cloudscale.xlab.si/wiki/index.php/Glossary
4Metric description constants: https://svnserver.informatik.kit.edu/i43/svn/

code/MetricSpecification/trunk/org.palladiosimulator.metricspec/src-man/org/

palladiosimulator/metricspec/constants/MetricDescriptionConstants.java

16

https://svnserver.informatik.kit.edu/i43/svn/code/MetricSpecification/trunk/org.palladiosimulator.metricspec/model
https://svnserver.informatik.kit.edu/i43/svn/code/MetricSpecification/trunk/org.palladiosimulator.metricspec/model
https://svnserver.informatik.kit.edu/i43/svn/code/MetricSpecification/trunk/org.palladiosimulator.metricspec.resources/models/commonMetrics.metricspec
https://svnserver.informatik.kit.edu/i43/svn/code/MetricSpecification/trunk/org.palladiosimulator.metricspec.resources/models/commonMetrics.metricspec
https://svnserver.informatik.kit.edu/i43/svn/code/MetricSpecification/trunk/org.palladiosimulator.metricspec.resources/models/commonMetrics.metricspec
http://cloudscale.xlab.si/wiki/index.php/Glossary
https://svnserver.informatik.kit.edu/i43/svn/code/MetricSpecification/trunk/org.palladiosimulator.metricspec/src-man/org/palladiosimulator/metricspec/constants/MetricDescriptionConstants.java
https://svnserver.informatik.kit.edu/i43/svn/code/MetricSpecification/trunk/org.palladiosimulator.metricspec/src-man/org/palladiosimulator/metricspec/constants/MetricDescriptionConstants.java
https://svnserver.informatik.kit.edu/i43/svn/code/MetricSpecification/trunk/org.palladiosimulator.metricspec/src-man/org/palladiosimulator/metricspec/constants/MetricDescriptionConstants.java

2.2 Library of Common Metric Descriptions

Figure 2.2: Library of Common Metric Descriptions

17

2. Metric Specification Framework

2.3 Custom Metric Descriptions

Palladio developers have two options to add custom metric descriptions:

1. extend our library of common metric descriptions, and

2. create a new library of metric descriptions.

Developers should prefer the first option if they anticipate that their custom
metric descriptions are of common interest. For example, adding metric descrip-
tions for common security or energy efficiency metrics would be a useful extension.
Developers realize such an extension by adding new metric descriptions to our li-
brary5 and by creating additional constants for these metric descriptions6.

If the first option is infeasible, developers should follow the second option by
creating their own library. In this case, they should proceed analogously to our
approach of creating a library of common metric descriptions. The typical starting
point is to create a new metric descriptions model using the tree editor we provide
(“File - New - Other... - Example EMF Model Creation Wizards - MetricSpec
Model - Choose ’Metric Description Repository’ as Model Object”). Afterwards,
a constants class should be created, similar to our class.

5Library of common metric descriptions: https://svnserver.informatik.kit.edu/i43/

svn/code/MetricSpecification/trunk/org.palladiosimulator.metricspec.resources/

models/commonMetrics.metricspec
6Metric description constants: https://svnserver.informatik.kit.edu/i43/svn/

code/MetricSpecification/trunk/org.palladiosimulator.metricspec/src-man/org/

palladiosimulator/metricspec/constants/MetricDescriptionConstants.java

18

https://svnserver.informatik.kit.edu/i43/svn/code/MetricSpecification/trunk/org.palladiosimulator.metricspec.resources/models/commonMetrics.metricspec
https://svnserver.informatik.kit.edu/i43/svn/code/MetricSpecification/trunk/org.palladiosimulator.metricspec.resources/models/commonMetrics.metricspec
https://svnserver.informatik.kit.edu/i43/svn/code/MetricSpecification/trunk/org.palladiosimulator.metricspec.resources/models/commonMetrics.metricspec
https://svnserver.informatik.kit.edu/i43/svn/code/MetricSpecification/trunk/org.palladiosimulator.metricspec/src-man/org/palladiosimulator/metricspec/constants/MetricDescriptionConstants.java
https://svnserver.informatik.kit.edu/i43/svn/code/MetricSpecification/trunk/org.palladiosimulator.metricspec/src-man/org/palladiosimulator/metricspec/constants/MetricDescriptionConstants.java
https://svnserver.informatik.kit.edu/i43/svn/code/MetricSpecification/trunk/org.palladiosimulator.metricspec/src-man/org/palladiosimulator/metricspec/constants/MetricDescriptionConstants.java

3 Measurement Framework

In this chapter, we describe the Measurement Specification Framework of QuAL.
The framework is build around the core concept of a measurement, i.e., an entity
that includes a metric description, the concrete measuring point of a metric, and
a list of measures taken (as illustrated in Fig. 1.4).

For metric descriptions, the framework makes use of the Metric Specification
Framework (see Chap. 2). For measuring points, the framework makes use of the
corresponding EDP2 functionality (see Chap. 7). For measures, the framework
makes use of the JScience framework [5].

This chapter covers the core concepts of measure providers and measurements
(Sec. 3.1), of measurement sources and corresponding listeners (Sec. 3.1), and
shows how Palladio developers can specify custom measures if the ones from
JScience are insufficient (Sec. 3.3).

3.1 Measure Providers and Measurements

Measure providers are entities that allow to receive lists of measures. Measure-
ments are such entities as they include measure lists. Additionally, measurements
include a metric description and the concrete measuring point where the measures
where taken (these concepts are also illustrated in Fig. 1.4). Fig. 3.1 shows the
packages, classes, and interfaces important for measure providers and measure-
ments within the Measurement Specification Framework.

Measure providers are realized in the *.measurementframework.measureprovider pack-
age (highlighted in green). IMeasureProvider specifies the interface for measure-
providing entities. This interface provides methods to receive measures - based
an a given metric or completely as list or array. AbstractMeasureProvider abstractly
implements this interface and additionally provides a convenience method to re-
ceive measurements that wrap corresponding measures based on a given metric
description. MeasurementListMeasureProvider implements this abstract class for lists
of measurements. Therefore, this class can also provide access to the list of sub-
sumed measurements.

Measurements are realized in the *.measurementframework package (highlighted in
yellow). The abstract class Measurement provides the core functionality of measure-
ments. Measurement implements IMeasureProvider because measurements include a
list of measures and IMetricEntity because measurements include a metric descrip-
tion. Moreover, Measurement provides a method to receive a concrete measurement
based on a given metric description.

19

3. Measurement Framework

There are two kinds of measurements: basic measurements and tuple measure-
ments. The former (BasicMeasurement class) are measurements with only a single
measure; typed by given generic type parameters. The latter (TupleMeasurement

class) are measurements that are realized as a list of subsumed measurements.
Such tuple measurements can particularly realize the implementation of IMeasure-

Provider by delegating its method calls to an object of the MeasurementListMeasure-

Provider class.

3.2 Measurement Sources and Listeners

Measurement sources provide measurements from analyzers, e.g., by providing
the values from probes. These measurement sources can have corresponding mea-
surement source listeners that can be used to inform observers about newly ar-
rived measurements. For example, calculators are such observers of measurement
sources. We directly describe measurement sources and their listeners in the con-
text of calculators in Sec. 5.1.

3.3 Custom Measures

Generally, we realize measures as instances of JScience [5] measures. However,
in situations where no suitable JScience measure is available, Palladio developers
have to provide their own custom measure that have to extend the JScience Measure

class.
In the *.measurementframework.measure package, we provide a dedicated place for

such custom measures. Currently, we only need one such custom measure: the
IdentifierMeasure class realizes a measure for textual base metrics. The typical quan-
tity to be used for this measure is Dimensionless with Unit.ONE. Palladio developers
that need further measure can proceed analogously to our approach of specifying
IdentifierMeasure.

20

3.3 Custom Measures

+
se

tC
on

fi
gu

ra
ti

o
n(

M
ap

<S
tr

in
g,

 O
b

je
ct

>
co

n
fig

u
ra

ti
o

n)
+

ge
tR

ec
or

de
rA

cc
ep

te
d

M
et

ri
c(

)
: M

et
ri

cD
e

sc
ri

p
ti

o
n

A
b
st
ra
ct
R
e
co
rd
er
C
on
fi
g
ur
a
ti
on

o
rg
.p
al
la
d
io
si
m
u
la
to
r.
re
co
rd
er
fr
am

e
w
o
rk
.c
o
n
fi
g

+
in

it
ia

liz
e(

IR
e

co
rd

e
rC

o
nf

ig
u

ra
ti

o
n

 r
ec

or
de

rC
o

nf
ig

u
ra

ti
on

)
+

w
ri

te
D

at
a(

M
ea

su
re

m
en

t
m

e
as

ur
em

en
t)

+
fl

us
h

()

IR
ec
or
d
er

o
rg
.p
al
la
d
io
si
m
u
la
to
r.
re
co
rd
er
fr
am

e
w
o
rk

+
n

ew
M

ea
su

re
m

e
nt

A
va

ila
b

le
(M

ea
su

re
m

en
t

m
e

as
ur

em
en

t)
+

p
re

U
n

re
gi

st
e

r(
)

A
b
st
ra
ct
R
e
co
rd
er

+
n

ew
M

ea
su

re
m

e
nt

A
va

ila
b

le
(M

ea
su

re
m

en
t

m
e

as
ur

em
en

t)
+

p
re

U
n

re
gi

st
e

r(
)IM

e
as
u
re
m
en
tS
o
u
rc
e
Li
st
en
er

o
rg
.p
al
la
d
io
si
m
u
la
to
r.
m
ea
su
re
m
e
nt
fr
am

ew
o
rk
.l
is
te
ne
r +

se
tC

on
fi

gu
ra

ti
o

n(
M

ap
<S

tr
in

g,
 O

b
je

ct
>

co
n

fig
u

ra
ti

o
n)

IR
ec
or
d
er
C
on
fi
gu
ra
ti
o
n

+
in

it
ia

liz
e(

M
ap

<S
tr

in
g,

 O
b

je
ct

>
co

n
fig

u
ra

ti
o

n)
+

ge
tE

xp
e

ri
m

e
nt

N
am

e
()

 :
 S

tr
in

g
+

ge
tE

xp
e

ri
m

e
nt

R
un

N
am

e
()

 :
 S

tr
in

g

A
b
st
ra
ct
R
e
co
rd
er
C
on
fi
g
ur
a
ti
on
Fa
ct
or
y

+
in

it
ia

liz
e(

M
ap

<S
tr

in
g,

 O
b

je
ct

>
co

n
fig

u
ra

ti
o

n)
+

cr
e

at
e

Re
co

rd
er

C
on

fi
gu

ra
ti

o
n

(M
ap

<S
tr

in
g,

 O
b

je
ct

>
co

n
fig

u
ra

ti
o

n)
 :

 IR
e

co
rd

e
rC

o
nf

ig
u

ra
ti

o
n

+
fi

na
liz

eR
ec

o
rd

e
rC

o
nf

ig
u

ra
ti

on
Fa

ct
or

y(
)

IR
ec
or
d
er
C
on
fi
gu
ra
ti
o
n
Fa
ct
o
ry

o
rg
.p
al
la
d
io
si
m
u
la
to
r.
re
co
rd
er
fr
am

e
w
o
rk
.e
d
p
2

o
rg
.p
al
la
d
io
si
m
u
la
to
r.
re
co
rd
er
fr
am

e
w
o
rk
.e
d
p
2.
co
n
fi
g

+
in

it
ia

liz
e(

IR
e

co
rd

e
rC

o
nf

ig
u

ra
ti

o
n

 r
ec

or
de

rC
o

nf
ig

u
ra

ti
on

)
+

w
ri

te
D

at
a(

M
ea

su
re

m
en

t
m

e
as

ur
em

en
t)

+
fl

us
h

()

ED
P
2R

aw
R
e
co
rd
e
r

+
se

tC
on

fi
gu

ra
ti

o
n(

M
ap

<S
tr

in
g,

 O
b

je
ct

>
co

n
fig

u
ra

ti
o

n)
+

ge
tM

ea
su

re
m

en
ts

()
 :

 M
ea

su
re

m
en

ts

ED
P
2R

ec
o
rd
er
C
o
nf
ig
u
ra
ti
on

cr

e
at

e
M

ea
su

re
(M

et
ri

cD
e

sc
ri

p
ti

o
n

m
ea

su
re

M
et

ri
c,

 M
ea

su
ri

n
gP

oi
nt

 m
ea

su
ri

n
gP

o
in

t)
 :

 M
ea

su
re

+
cr

e
at

e
Re

co
rd

er
C

on
fi

gu
ra

ti
o

n
(M

ap
<S

tr
in

g,
 O

b
je

ct
>

co
n

fig
u

ra
ti

o
n)

 :
 IR

e
co

rd
e

rC
o

nf
ig

u
ra

ti
o

n
+

fi
na

liz
eR

ec
o

rd
e

rC
o

nf
ig

u
ra

ti
on

Fa
ct

or
y(

)
+

in
it

ia
liz

e(
M

ap
<S

tr
in

g,
 O

b
je

ct
>

co
n

fig
u

ra
ti

o
n)

A
b
st
ra
ct
E
D
P
2R

ec
or
d
er
Co
nf
ig
u
ra
ti
o
n
Fa
ct
o
ry

cr

e
at

e
M

ea
su

re
(M

et
ri

cD
e

sc
ri

p
ti

o
n

m
ea

su
re

M
et

ri
c,

 M

ea
su

ri
n

gP
oi

nt
 m

ea
su

ri
n

gP
o

in
t)

 :
 M

ea
su

re
+

in
it

ia
liz

e(
M

ap
<S

tr
in

g,
 O

b
je

ct
>

co
n

fig
u

ra
ti

o
n)

ED
P
2R

ec
o
rd
er
C
o
nf
ig
u
ra
ti
on
Fa
ct
o
ry

+
in

it
ia

liz
e(

M
ap

<S
tr

in
g,

 O
b

je
ct

>
co

n
fig

u
ra

ti
o

n)

ED
P
2R

ep
o
rt
R
e
co
rd
e
rC
o
n
fi
gu
ra
ti
o
nF
ac
to
ry

Figure 3.1: Packages, Classes, and Interfaces important for Measure Providers and
Measurements

21

4 Analyzer Framework

The Analyzer Framework of QuAL intends to provide common functionality to dif-
ferent analyzer implementations. For example, the framework provides the means
to specify run configurations of analysis runs and a shared control interface for
simulations. Example analyzer implementations that make use of this framework
include Palladio simulators like SimuCom [2], SimuLizar [1], and EventSim [7] as
well as the performance prototype provided by ProtoCom [2, 6].

In the context of QuAL, only the borders of the Analyzer Framework have
been touched; we did not refactor it. However, we altered the framework where
necessary in order to integrate other QuAL frameworks (e.g., Metric Specifica-
tion Framework, Measurement Specification Framework, Probe Framework, and
Experiment Automation Framework). A potential refactoring and design de-
scription may be provided in the future. Therefore, we advise Palladio devel-
opers interested in the Analyzer Framework refactoring and/or in existing/cus-
tom analyzers to investigate the projects belonging to de.uka.ipd.sdq.simulation and
de.uka.ipd.sdq.simulation.abstractsimengine1. Also the analyzer implementations men-
tioned above are a good resource for getting familiar to the current Analyzer
Framework.

1Analyzer Framework in the Palladio SVN: https://svnserver.informatik.kit.edu/i43/

svn/code/Palladio/Core/trunk/SimuCom

22

https://svnserver.informatik.kit.edu/i43/svn/code/Palladio/Core/trunk/SimuCom
https://svnserver.informatik.kit.edu/i43/svn/code/Palladio/Core/trunk/SimuCom

5 Probe Framework

In this chapter, we describe the Probe Framework of QuAL. We describe the inher-
itance hierarchy of probes and calculators (Sec. 5.1), how probes and calculators
can be used by analyzers (Sec. 5.2), and how custom probes and calculators can
be added (Sec. 5.3).

5.1 Probes and Calculators

In this section, we describe the inheritance hierarchy of probes and calculators.
Furthermore, we list and describe the most common probes and calculators. For
our descriptions, we refer to Fig. 5.1 that illustrates a structural viewpoint of
Probe Framework using packages, classes, and interfaces.

Generally, we distinguish between probes (that take measurements from ana-
lyzers) and measurement sources (that provide measurements from analyzers,
e.g., by providing the values from probes). Calculators are a special case of such
measurement sources, specialized on probe processing (c.f., MeasurementSource class
in package org.palladiosimulator.measurementframework.listener).

Both, probes and measurement sources, inherit from MetricEntity, a class of the
Metric Specification Framework (package org.palladiosimulator.metricspec.metricentity).
MetricEntity describes objects that are typed by a metric, thus, allowing to receive
their metric description (via getMetricDescription(. . .)).

Moreover, probes and measurement sources implement the IAbstractObservable

interface of Palladio Commons (package org.palladiosimulator.commons.designpatterns).
The IAbstractObservable interface allows to specify observable objects according to
the observer design pattern. Therefore, probes and measurement sources are such
observable objects that can be observed by observer objects. Once probes or
measurement sources have new measurements at hand, they inform registered ob-
servers about these new measurements. To do so, probes as well as measurements
provide dedicated interfaces with call-back methods that observers have to imple-
ment. Such interfaces are typed by the generic type parameter T of IAbstractO-

bservable. Probes bind the IProbeListener interface and measurement sources the
IMeasurementSourceListener to T, respectively. Both of these interfaces provide
call-back methods that pass the new measurement as a parameter (a ProbeMea-

surement for the case of probes and a Measurement for the case of measurement
sources).

Calculators are an example for such an observer because they implement the
IProbeListener interface to observe one or many probes. On the other hand, they

23

5. Probe Framework

+
ge

tM
et

ri
cD

es
ci

pt
io

n
()

 :
 M

et
ri

cD
e

sc
ri

p
ti

o
n

+
is

Co
m

p
at

ib
le

W
it

h
(M

et
ri

cD
e

sc
ri

p
ti

o
n

ot
he

r)
 :

 B
oo

l

IM
e
tr
ic
En
ti
ty

+
n

ew
M

ea
su

re
m

e
nt

A
va

ila
b

le
(M

ea
su

re
m

en
t

m
e

as
ur

em
en

t)
+

p
re

U
n

re
gi

st
e

r(
)IM

e
as
u
re
m
en
tS
o
u
rc
e
Li
st
en
er

P
ro
b
e

+
ta

ke
M

ea
su

re
m

en
t(

)
: M

ea
su

re
m

en
t

+
ta

ke
M

ea
su

re
m

en
t(

R
eq

ue
st

C
o

nt
ex

t
co

nt
ex

t)
 :

 M
ea

su
re

m
en

t

do
M

ea
su

re
(R

eq
u

es
tC

o
nt

ex
t

co
n

te
xt

)
: M

ea
su

re
m

en
t

Tr
ig
g
er
ed
Pr
o
be

ev

en
tS

ou
rc

e
: E

ve
n

tS
o

u
rc

eT
yp

e

re

gi
st

er
Li

st
en

er
()

Ev
en
tP
ro
be

+
n

ew
Pr

ob
eM

e
as

u
re

m
en

tA
va

ila
bl

e(
P

ro
be

M
ea

su
re

m
en

t
m

ea
su

re
m

en
t)

ca

lc
ul

at
e(

Li
st

<P
ro

be
M

ea
su

re
m

en
t>

 m
e

as
u

re
m

en
ts

)
+

p
re

U
n

re
gi

st
e

r(
)

C
al
cu
la
to
r

Tr
ig
ge
re
d
-

P
ro
b
eL
is
t

B
a
si
c-

Tr
ig
g
er
ed
Pr
o
be

M
e
as
u
re
m
en
t-

So
ur
ce

M
e
tr
ic
En
ti
ty

B
a
si
cO

b
je
ct
-

St
at
eP
ro
b
e

Ta
ke
C
ur
re
n
t-

Si
m
u
la
ti
o
n
Ti
m
e
-

P
ro
b
e

Ta
ke
P
as
si
ve
-

R
es
ou
rc
e
St
a
te
-

P
ro
b
e

Ta
ke
Sc
he
du
le
d
-

R
es
ou
rc
e
St
a
te
-

P
ro
b
e

Ev
e
nt
P
ro
b
eL
is
t

B
a
si
cE
ve
n
tP
ro
be

Ta
ke
Sc
he
du
le
d
-

R
es
ou
rc
e
D
e
m
a
nd

-
P
ro
b
e

U
n
ar
yC
al
cu
la
to
r

Id
en
ti
ty
Ca
lc
ul
at
o
r

Ti
m
e
Sp
a
n
-

C
al
cu
la
to
r

R
es
po
n
se
T
im
e-

C
al
cu
la
to
r

H
ol
d
Ti
m
e
-

C
al
cu
la
to
r

W
ai
ti
n
gT
im
e
-

C
al
cu
la
to
r

D
em

an
dB
a
se
d
-

W
ai
ti
n
gT
im
e
-

C
al
cu
la
to
r

o
rg
.p
al
la
d
io
si
m
u
la
to
r.
p
ro
b
ef
ra
m
e
w
o
rk
.c
a
lc
u
la
to
r.
in
te
rn
al

o
rg
.p
al
la
d
io
si
m
u
la
to
r.
p
ro
b
ef
ra
m
e
w
o
rk
.c
a
lc
u
la
to
r

D
ef
a
ul
tC
a
lc
ul
at
o
r-

Fa
ct
o
ry

o
rg
.p
al
la
d
io
si
m
u
la
to
r.
m
ea
su
re
m
e
nt
fr
am

ew
o
rk
.l
is
te
ne
r

o
rg
.p
al
la
d
io
si
m
u
la
to
r.
m
et
ri
cs
p
ec
.m

et
ri
ce
n
ti
ty

P
ro

vi
d

es
 a

cc
es

s
to

in

te
rn

al
 c

al
cu

la
to

rs
.

o
rg
.p
al
la
d
io
si
m
u
la
to
r.
p
ro
b
ef
ra
m
e
w
o
rk
.p
ro
b
es

o
rg
.p
al
la
d
io
si
m
u
la
to
r.
si
m
uc
om

.f
ra
m
ew

o
rk
.p
ro
b
es

+
ad

dO
b

se
rv

er
(T

 o
b

se
rv

er
)

+
re

m
ov

eO
b

se
rv

er
(T

 o
b

se
rv

er
)

IA
b
st
ra
ct
O
b
se
rv
ab
le

T

o
rg
.p
al
la
d
io
si
m
u
la
to
r.
co
m
m
on
s.
d
es
ig
n
pa
tt
e
rn
s

«
b
in

d
»
 T

 :
 I
M

e
a
su

re
m

e
n
tS

o
u
rc

e
L
is

te
ne

r

«
b
in

d
»
 T

 :
 I
P

ro
be

L
is

te
n
e
r

o
rg
.p
al
la
d
io
si
m
u
la
to
r.
p
ro
b
ef
ra
m
e
w
o
rk
.p
ro
b
es
.l
is
te
ne
r

+
n

ew
Pr

ob
eM

e
as

u
re

m
en

tA
va

ila
bl

e(
P

ro
be

M
ea

su
re

m
en

t
m

ea
su

re
m

en
t)

IP
ro
b
eL
is
te
ne
r

*
su

bs
um

ed
Pr

ob
es

*
su

bs
um

ed
Pr

ob
es

Figure 5.1: Packages, Classes, and Interfaces of Probe Framework

24

5.1 Probes and Calculators

also inherit from MeasurementSource, thus, making them observable objects on their
own. For instance, they can provide newly calculated measurements to recorders
(recorders implement the IMeasurementSourceListener interface and, thus, can act as
observees of calculators).

Given these fundamental properties of probes and calculators, we discuss dif-
ferent types of probes in Sec. 5.1.1 and different types of calculators in Sec. 5.1.2.

5.1.1 Probe Types

The Probe Framework provides two types of probes: triggered probes (Triggered-

Probe class) and event probes (EventProbe class).

Triggered Probes

Triggered probes measure as soon as their takeMeasurement method is invoked (with
optional context parameter of type RequestContext, e.g., the thread that triggered
the probe). This invocation triggers the abstract method doMeasure (with an op-
tionally empty context). After doMeasure computed a new measurement, takeMea-

surement further informs all registered observers about the newly available mea-
surement.

The method doMeasure itself has to be provided by classes inheriting from the
TriggeredProbe class. Currently, there are two types of such classes: basic triggered
probes (BasicTriggeredProbe class) and triggered probe lists (TriggeredProbeList class).
Basic triggered probes (abstract class BasicTriggeredProbe) implement the

doMeasure method by returning a BasicMeasurement, i.e., a measurement for a Base-

MetricDescription. Therefore, they are constructed by passing an appropriate base
metric description as a parameter that is used to construct basic measurements.
For determining the measurement itself, they invoke the abstract method getBa-

sicMeasure.
Currently, there is one class inheriting from BasicTriggeredProbe: the abstract

class BasicObjectStateProbe. BasicObjectStateProbe is a probe that observes an ob-
ject’s state, thus, additionally maintaining an observeredStateObject member vari-
able. However, it leaves the implementation of the abstract method getBasicMea-

sure to its subclasses that are currently part of the SimuCom Framework package
org.palladiosimulator.simucom.framework.probes:

TakeCurrentSimulationTimeProbe Measures a point in time metric (in seconds)
by requesting the current simulation time from the simulation controller
(observed state object).

TakePassiveResourceStateProbe Measures a passive resource state metric (dimen-
sionless) by calculating the difference between the capacity of the passive
resource (observed state object) and its available resources.

TakeScheduledResourceStateProbe Measures a CPU state metric (dimensionless)
by requesting the queue length from the scheduled CPU resource (observed

25

5. Probe Framework

state object). For example, the queue length can be used to calculate CPU
utilization (the queue length gives the number of currently waiting jobs to be
served by the CPU). Because scheduled resources can have many instances
(e.g., a CPU can have many cores), a pointer to the concrete instance is used
additionally.

Triggered probe lists (class TriggeredProbeList) group a list of subsumed, trig-
gered probes. Therefore, triggered probe lists can implement doMeasure by invoking
doMeasure on each of their subsumed probes and by returning a measurement tuple
of measurement results from these probes.

Event Probes

Event probes measure as soon as an event is emitted for which they are regis-
tered. Therefore, they explicitly refer to an eventSource object. Subclasses have to
realize the registration to this object by implementing the abstract method regis-

terListener. Currently, there are two types of such subclasses: basic event probes
(BasicEventProbe class) and event probe lists (EventProbeList class).

Basic event probes (abstract class BasicEventProbe) provide a generic notify

method. This method allows subclasses to pass an event measurement to it when
they receive an event. Subsequently, notify can generically inform registered probe
listeners about a newly available probe measurement. However, BasicEventProbe

leaves the implementation of the abstract method registerListener to its subclasses.
The most common subclass is currently part of the SimuCom Framework package
org.palladiosimulator.simucom.framework.probes:

TakeScheduledResourceDemandProbe Measures a resource demand metric (in sec-
onds) by listening to demands to a scheduled resource (event source type).
Therefore, it has to implement the IDemandListener interface and to register
itself in the registerListener method to this scheduled resource. The measured
demand is directly received by the demand call-back method of the listener.

Event probe lists (class EventProbeList) group a list of subsumed, triggered
probes that are triggered as soon as an additional, dedicated event probe emits an
event. EventProbeList can register itself to this event probe because it implements
the IProbeListener interface. Once a new measurement is available (via the call-back
method newProbeMeasurementAvailable), an event probe list creates a measurement
tuple by creating a list with the new measurement plus the measurements from
subsumed triggered probes. These measurements are received by invoking doMea-

sure on each subsumed probe (that is possible since only triggered probes are
subsumed). Finally, registered listeners (e.g., calculators) are informed about the
newly available measurement tuple.

26

5.1 Probes and Calculators

5.1.2 Calculator Types

Calculators attach themselves to (a set of) probes to transform their measures to
a measurement to be used further (e.g., for visualization or recording). Therefore,
they specify which measures are of interest outside from analyzers.

The main super class of all calculators is the abstract class Calculator. The Probe
Framework provides a factory class (DefaultCalculatorFactory) to create concrete cal-
culator objects that inherit from this base class. These concrete calculators are
collected in the internal package org.palladiosimulator.probeframework.calculator.internal

(access without using the factory class is impossible in OSGI because classes of
internal packages are not exported).

Calculator objects expect a list of probes to be measured before they start their
calculation. For example, a response time calculator needs a measurement series of
two probe measurements (one for start time and one for end time of an operation
call). For such a measurement series, calculators maintain a memory to store the
measurements received from observed probes. As soon as the last measurement
sample arrives, calculators start their calculation by invoking the template method
calculate (c.f., Calculator class).

Currently, there are two direct subclasses of Calculator: unary calculators (ab-
stract class UnaryCalculator) and time span calculators (abstract class TimeSpanCal-

culator).

Unary Calculators

Unary calculators expect exactly one probe, thus, restricting calculators to ex-
actly one observed probe. They leave the implementation of the template method
calculate to their subclasses.

Currently, the only such subclass is the IdentityCalculator class. Identity calcula-
tors are unary calculators that directly let probe measurements pass through. For
example, the current state of a “take passive resource state probe” may directly
be passed through in order to determine its utilization.

Time Span Calculators

Time span calculators (abstract class TimeSpanCalculator) calculate a time span.
These calculators expect two probes, each providing at least a point in time mea-
surement. Subsequently, they calculate the time span by subtracting the point in
time of the first probe from the point in time of the second probe. The result is
a (start point in time, time span)-tuple, i.e., a measurement typed with a metric
set.

Currently, three subclasses of TimeSpanCalculator exist:

ResponseTimeCalculator Calculates a time span representing the response time
(as defined by the response time metric). It expects a probe giving the start
and a probe giving the end point in time of an operation call. The final
result is a (start point in time, response time)-tuple.

27

5. Probe Framework

HoldTimeCalculator Calculates a time span representing the hold time (as de-
fined by the hold time metric). It expects a probe giving the start of holding
and a probe giving the end of holding, e.g., in a passive resource pool. The
final result is a (start point in time, hold time)-tuple.

WaitingTimeCalculator Calculates a time span representing the waiting time (as
defined by the waiting time metric). It expects a probe giving the start of
waiting and a probe giving the end of waiting, e.g., at a passive resource
pool. The final result is a (start point in time, waiting time)-tuple.

Besides this default waiting time calculation, the subclass DemandBased-

WaitingTimeCalculator of the WaitingTimeCalculator class employs an alterna-
tive. Demand-based waiting time calculators can calculate the waiting time
for resources in environments where the stop of the waiting period can-
not be observed directly. Rather, the following values (respectively events)
should be observable: start (“request for processing”-event), stop (“end of
processing”-event; note that this is different from the waiting period stop),
and demand (the demanded time). The waiting time results from calcu-
lating (stop − start) − demand. The final result is a (start point in time,
waiting time)-tuple.

5.2 Using Probes and Calculators

In this section, we exemplify the usage of probes and calculators. For this exempli-
fication, we use a simple probe (a simple specialization of a triggered basic object
state probe) that takes the time of a simulation in Sec. 5.2.1. Subsequently, we use
two of these probes to construct and use a response time calculator in Sec. 5.2.2.
Finally, we point to further usage examples that can directly be found within the
Probe Framework in Sec. 5.2.3.

5.2.1 Using an “Example Take Current Time Probe”

In Listing 9.1, we show how an example probe for taking the current time of a sim-
ulation can be used. The probe is instantiated by registering it to the simulation
(line 5). Afterwards, an example request context is created that provides context
information about the measurement to be taken (line 6). Finally, the simulation
runs for 100 seconds (line 8) and then the probe measurement is triggered (line 9).

1 ExampleTakeCurrentTimeProbe probe;

2 RequestContext context;

3 ProbeMeasurement probeMeasurement;

4
5 probe = new ExampleTakeCurrentTimeProbe(simContext);

6 requestContext = new RequestContext("example probing");

7
8 simContext.setSimulatedTime (100d);

9 probeMeasurement = probe.takeMeasurement(requestContext);

28

5.2 Using Probes and Calculators

Listing 5.1: Using an “example current time probe”

5.2.2 Using a “Response Time Calculator”

In Listing 5.2, we show how an example calculator for calculating the response
time of an example operation call (myOperationCall) can be used. The calculator
is instantiated using the DefaultCalculatorFactory (line 11). For this instantiation,
two “example current time probes” (see previous section) are used: one for the
start of myOperationCall, one for the end of myOperationCall. We also register a
simple observer to this calculator that directly outputs the measurement (line
19). Afterwards, we start the simulation at time 0 seconds and trigger the start
probe (lines 26/27). Subsequently, we run the simulation for 100 seconds and
trigger the end probe (lines 29/30). Because that was the last registered probe
of the response time calculator, the output “Response Time: 100 seconds” should
have been created.

1 ICalculatorFactory calculatorFactory;

2 RequestContext requestContext;

3 ExampleTakeCurrentTimeProbe startProbe;

4 ExampleTakeCurrentTimeProbe endProbe;

5 Calculator rtCalculator;

6
7 calculatorFactory = new DefaultCalculatorFactory ();

8 requestContext = new RequestContext("myOperationCall");

9 startProbe = new ExampleTakeCurrentTimeProbe(simContext);

10 endProbe = new ExampleTakeCurrentTimeProbe(simContext);

11 rtCalculator = calculatorFactory.buildResponseTimeCalculator(

12 "Example Response Time Calculation",

13 Arrays.asList(

14 (Probe) startProbe ,

15 (Probe) endProbe

16)

17);

18
19 rtCalculator.addObserver(new IMeasurementSourceListener () {

20 @Override

21 public void newMeasurementAvailable(Measurement measurement)

{

22 System.out.println("Response Time: "+measurement);

23 }

24 }

25
26 simContext.setSimulatedTime (0.0d);

27 startProbe.takeMeasurement(requestContext);

28
29 simContext.setSimulatedTime (100.d);

30 endProbe.takeMeasurement(requestContext);

31
32 // Output is "Response Time: 100 seconds"

29

5. Probe Framework

Listing 5.2: Using a “response time calculator”

5.2.3 Further Examples on Using Probes and Calculators

We provide further usage examples of probes and calculators within the Probe
Framework. We provide these examples in the form of test cases in the package
org.palladiosimulator.probeframework.tests. Their documentation is directly available
within the code (JavaDoc).

5.3 Custom Probes and Calculators

In this section, we exemplify the creation of custom probes and calculators. For
this exemplification, we describe how to create the previously used “example cur-
rent time probe” in Sec. 5.3.1. In the Probe Framework, we provide several fur-
ther examples for probe creation. In particular, we provide several examples of
calculator creation. Therefore, we just point to these examples in Sec. 5.3.2; cus-
tomization should be straight-forward.

5.3.1 Creating an “Example Take Current Time Probe”

In Listing 5.3, we show how to create the previously used “example current time
probe”. This creation only requires one constructor (ExampleTakeCurrentTimeProbe)
and one method (getBasicMeasure) to be implemented. Because this probe is a
basic object state probe, we simply have to specify which object holds the state
to measure and what is the metric we want to measure. The state object is the
simulation and the metric is a point in time metric as specified in the constructor
(line 9). In getBasicMeasure, we simply have to receive the simulation time from
the state object (i.e., the simulation) to determine the measurement (line 14).

5.3.2 Further Examples on Creating Probes and Calculators

We provide further implementation examples of probes and calculators within
the Probe Framework. Examples for probe implementations are in the package
org.palladiosimulator.probeframework.probes.example. Examples for calculator imple-
mentations are in the package org.palladiosimulator.probeframework.calculator.internal.
Their documentation is directly available within the code (JavaDoc).

30

5.3 Custom Probes and Calculators

1 public class ExampleTakeCurrentTimeProbe

2 extends BasicObjectStateProbe <

3 SimpleSimulationContext ,

4 Double ,

5 Duration

6 > {

7
8 public ExampleTakeCurrentTimeProbe(SimpleSimulationContext

simulationContext) {

9 super(simulationContext , MetricDescriptionConstants.

POINT_IN_TIME_METRIC);

10 }

11
12 @Override

13 protected Measure <Double , Duration > getBasicMeasure(

RequestContext measurementContext) {

14 return Measure.valueOf(getStateObject ().getSimulatedTime (),

SI.SECOND);

15 }

16
17 }

Listing 5.3: Using a “response time calculator”

31

6 Kieker Framework

In this chapter, we discuss the Kieker Framework [4] integration of QuAL. The
Kieker Framework allows Palladio developers to setup pipes and filters chains for
measurements.

For example, measurements travel from calculators (measurement sources) to
recorders (measurement sinks). On the path from source to sink, such measure-
ments can be filtered, e.g., if only measurements that break a certain service level
objective are of interest. Such a scenario can heavily foster from Kieker because it
provides the means to specify such filters and pipe them from one to the other. For
instance, Kieker comes with direct support for JMS-based transfer of data through
such chains. Note that Kieker realizes a push-based pipes and filters chain, i.e.,
elements are pushed through the pipeline, not pulled. Therefore, a filter explicitly
sends measurements to its output ports once it has a measurement available. In
contrast, the visualization components of QuAL’s UI Framework are pull-based -
they request the data from the respective filter to get it (c.f., Chap. 10).

Unfortunately, we have not realized the Kieker integration yet - we so far lim-
ited ourselves to plan its integration here, in this document. The overview in
Fig. 1.5 already reflects our integration ideas and, thus, does not show the actual
connection between calculators and recorders/live visualization. In the current
state, we directly connect calculators to recorders. This has the consequence that
we do not support any filters or JMS-based delivery of measurements. Moreover,
we also do not support live visualization yet. The integration of Kieker is one of
the very next steps planned for future releases of QuAL; including a full developer
documentation.

32

7 Recorder Framework

This chapter covers the Recorder Framework of QuAL. Palladio developers can use
this framework to specify custom recorders for their measurements. Currently, two
of such recorders exist: “Sensor Framework” and “Experiment Data Persistency
& Presentation (EDP2)”. Sensor Framework was the first recorder to be realized
and is now, with the advent of the EDP2 recorder, deprecated. Therefore, this
chapter exemplifies the EDP2 recorder only.

In Fig. 7.1, we illustrate the relation between the generic classes of the Recorder
Framework and their use by the EDP2 recorder. The upper part shows recorders
and recorder configurations as the main concepts of the Recorder Framework
(Sec. 7.1). The lower part exemplifies the specification of concrete recorders
by means of EDP2 recorder classes inheriting from Recorder Framework classes
(Sec. 7.2). Similarly to this EDP2 recorder, Palladio developers can create custom
recorders and enable these by dedicated extension points (Sec. 7.3).

7.1 Recorders and Recorder Configurations

Recorders (Sec. 7.1.1) and recorder configurations (Sec. 7.1.2) are the main con-
cepts of the Recorder Framework. In the upper part of Fig. 7.1, we visualize
corresponding classes for these concepts.

7.1.1 Recorders

Recorders are realized by an interface IRecorder and an abstract implementation
AbstractRecorder of the interface. Concrete recorders have to inherit from this
abstract recorder class.

IRecorder reflects the typical workflow when using recorders: (1) initialize the
recorder using a recorder configuration (initialize method), (2) write a given mea-
surement to the recorder (writeData method), and (3) flush all measurements to
the recorder for final storage (flush method).

Moreover, IRecorder inherits from IMeasurementSourceListener of the Measurement
Framework (c.f., Sec. 3.2) such that recorders can be added as observers to mea-
surement source, e.g., to calculators. AbstractRecorder directly implements this ad-
ditional interface by delegating its methods to the corresponding IRecorder methods
(when new measurements are available, they are directly written and when being
unregistered, the recorder is flushed first).

33

7. Recorder Framework

+
se

tC
on

fi
gu

ra
ti

o
n(

M
ap

<S
tr

in
g,

 O
b

je
ct

>
co

n
fig

u
ra

ti
o

n)
+

ge
tR

ec
or

de
rA

cc
ep

te
d

M
et

ri
c(

)
: M

et
ri

cD
e

sc
ri

p
ti

o
n

A
b
st
ra
ct
R
e
co
rd
er
C
on
fi
g
ur
a
ti
on

o
rg
.p
al
la
d
io
si
m
u
la
to
r.
re
co
rd
er
fr
am

e
w
o
rk
.c
o
n
fi
g

+
in

it
ia

liz
e(

IR
e

co
rd

e
rC

o
nf

ig
u

ra
ti

o
n

 r
ec

or
de

rC
o

nf
ig

u
ra

ti
on

)
+

w
ri

te
D

at
a(

M
ea

su
re

m
en

t
m

e
as

ur
em

en
t)

+
fl

us
h

()

IR
ec
or
d
er

o
rg
.p
al
la
d
io
si
m
u
la
to
r.
re
co
rd
er
fr
am

e
w
o
rk

+
n

ew
M

ea
su

re
m

e
nt

A
va

ila
b

le
(M

ea
su

re
m

en
t

m
e

as
ur

em
en

t)
+

p
re

U
n

re
gi

st
e

r(
)

A
b
st
ra
ct
R
e
co
rd
er

+
n

ew
M

ea
su

re
m

e
nt

A
va

ila
b

le
(M

ea
su

re
m

en
t

m
e

as
ur

em
en

t)
+

p
re

U
n

re
gi

st
e

r(
)IM

e
as
u
re
m
en
tS
o
u
rc
e
Li
st
en
er

o
rg
.p
al
la
d
io
si
m
u
la
to
r.
m
ea
su
re
m
e
nt
fr
am

ew
o
rk
.l
is
te
ne
r +

se
tC

on
fi

gu
ra

ti
o

n(
M

ap
<S

tr
in

g,
 O

b
je

ct
>

co
n

fig
u

ra
ti

o
n)

IR
ec
or
d
er
C
on
fi
gu
ra
ti
o
n

+
in

it
ia

liz
e(

M
ap

<S
tr

in
g,

 O
b

je
ct

>
co

n
fig

u
ra

ti
o

n)
+

ge
tE

xp
e

ri
m

e
nt

N
am

e
()

 :
 S

tr
in

g
+

ge
tE

xp
e

ri
m

e
nt

R
un

N
am

e
()

 :
 S

tr
in

g

A
b
st
ra
ct
R
e
co
rd
er
C
on
fi
g
ur
a
ti
on
Fa
ct
or
y

+
in

it
ia

liz
e(

M
ap

<S
tr

in
g,

 O
b

je
ct

>
co

n
fig

u
ra

ti
o

n)
+

cr
e

at
e

Re
co

rd
er

C
on

fi
gu

ra
ti

o
n

(M
ap

<S
tr

in
g,

 O
b

je
ct

>
co

n
fig

u
ra

ti
o

n)
 :

 IR
e

co
rd

e
rC

o
nf

ig
u

ra
ti

o
n

+
fi

na
liz

eR
ec

o
rd

e
rC

o
nf

ig
u

ra
ti

on
Fa

ct
or

y(
)

IR
ec
or
d
er
C
on
fi
gu
ra
ti
o
n
Fa
ct
o
ry

o
rg
.p
al
la
d
io
si
m
u
la
to
r.
re
co
rd
er
fr
am

e
w
o
rk
.e
d
p
2

o
rg
.p
al
la
d
io
si
m
u
la
to
r.
re
co
rd
er
fr
am

e
w
o
rk
.e
d
p
2.
co
n
fi
g

+
in

it
ia

liz
e(

IR
e

co
rd

e
rC

o
nf

ig
u

ra
ti

o
n

 r
ec

or
de

rC
o

nf
ig

u
ra

ti
on

)
+

w
ri

te
D

at
a(

M
ea

su
re

m
en

t
m

e
as

ur
em

en
t)

+
fl

us
h

()

ED
P
2R

aw
R
e
co
rd
e
r

+
se

tC
on

fi
gu

ra
ti

o
n(

M
ap

<S
tr

in
g,

 O
b

je
ct

>
co

n
fig

u
ra

ti
o

n)
+

ge
tM

ea
su

re
m

en
ts

()
 :

 M
ea

su
re

m
en

ts

ED
P
2R

ec
o
rd
er
C
o
nf
ig
u
ra
ti
on

cr

e
at

e
M

ea
su

re
(M

et
ri

cD
e

sc
ri

p
ti

o
n

m
ea

su
re

M
et

ri
c,

 M
ea

su
ri

n
gP

oi
nt

 m
ea

su
ri

n
gP

o
in

t)
 :

 M
ea

su
re

+
cr

e
at

e
Re

co
rd

er
C

on
fi

gu
ra

ti
o

n
(M

ap
<S

tr
in

g,
 O

b
je

ct
>

co
n

fig
u

ra
ti

o
n)

 :
 IR

e
co

rd
e

rC
o

nf
ig

u
ra

ti
o

n
+

fi
na

liz
eR

ec
o

rd
e

rC
o

nf
ig

u
ra

ti
on

Fa
ct

or
y(

)
+

in
it

ia
liz

e(
M

ap
<S

tr
in

g,
 O

b
je

ct
>

co
n

fig
u

ra
ti

o
n)

A
b
st
ra
ct
E
D
P
2R

ec
or
d
er
Co
nf
ig
u
ra
ti
o
n
Fa
ct
o
ry

cr

e
at

e
M

ea
su

re
(M

et
ri

cD
e

sc
ri

p
ti

o
n

m
ea

su
re

M
et

ri
c,

 M

ea
su

ri
n

gP
oi

nt
 m

ea
su

ri
n

gP
o

in
t)

 :
 M

ea
su

re
+

in
it

ia
liz

e(
M

ap
<S

tr
in

g,
 O

b
je

ct
>

co
n

fig
u

ra
ti

o
n)

ED
P
2R

ec
o
rd
er
C
o
nf
ig
u
ra
ti
on
Fa
ct
o
ry

+
in

it
ia

liz
e(

M
ap

<S
tr

in
g,

 O
b

je
ct

>
co

n
fig

u
ra

ti
o

n)

ED
P
2R

ep
o
rt
R
e
co
rd
e
rC
o
n
fi
gu
ra
ti
o
nF
ac
to
ry

Figure 7.1: The EDP2 Recorder uses Recorders and Recorder Configurations from
the Recorder Framework

34

7.2 Example: the Experiment Data Persistency & Presentation (EDP2) Recorder

7.1.2 Recorder Configurations

As stated in the previous section, recorders are configured using a recorder config-
uration. Such recorder configurations are typed by the IRecorderConfiguration inter-
face that provides the setConfiguration method to initialize configurations based on
key-value maps. AbstractRecorderConfiguration provides an abstract implementation
of IRecorderConfiguration, along with the convenience method getRecorderAccepted-

Metric that returns the particular metric description a recorder object is config-
ured with. Concrete recorder configurations have to inherit from this abstract
configuration class.

The creation of recorder configurations is realized via the factory method soft-
ware design pattern. Accordingly, we the interface IRecorderConfigurationFactory

allows to create new recorder configuration objects (createRecorderConfiguration).
Before creation of a configuration, the factory has to be initialized using a given
key-value map (initialize). Before destruction of a configuration, the factory has to
be finalized (finalizeRecorderConfigurationFactory).

The abstract class AbstractRecorderConfigurationFactory implements initialize as well
as provides convenience methods to get the experiment name and the experiment
run name based on the a previous initialization. Concrete recorder configuration
factories have to inherit from AbstractRecorderConfigurationFactory.

7.2 Example: the Experiment Data Persistency &
Presentation (EDP2) Recorder

The Experiment Data Persistency & Presentation (EDP2) Recorder realizes a
concrete recorder as well as associated configurations and factories by extending
the Recorder Framework. We visualize corresponding classes in the lower part of
Fig. 7.1.

EDP2RawRecorder subclasses AbstractRecorder by providing EDP2-specific imple-
mentations for IRecorder methods. Similarly, EDP2RecorderConfiguration provides an
EDP2-specific implementation for recorder configurations.

EDP2 supports two conceptually different types of recorder configuration fac-
tories: a basic factory for single experiment runs as well as a report factory
for measurements over several experiment runs. Therefore, we provide Abstract-

EDP2RecorderConfigurationFactory as an abstract subclass of AbstractRecorderConfigu-

rationFactory that provides common functionality for both EDP2 factories. Based
on this abstract superclass, EDP2RecorderConfigurationFactory implements the fac-
tory for basic factories and EDP2ReportRecorderConfigurationFactory the factory for
report factories.

35

7. Recorder Framework

7.3 Custom Recorders and Extension Points

Palladio developers who want to provide custom recorder implementations should
proceed analogously to our EDP2 recorder implementation (Sec. 7.2). That is,
they should provide subclasses for AbstractRecorder, AbstractRecorderConfiguration,
and AbstractRecorderConfigurationFactory.

Moreover, these custom recorders have to be enabled using the dedicated exten-
sion point provided by the Recorder Framework1. The extension point particularly
requests implementations for AbstractRecorder and AbstractRecorderConfigurationFac-

tory. The EDP2 recorder (Sec. 7.2) exemplifies an extension of this extension
point.

1The plug-in ID and extension point ID are both org.palladiosimulator.recorderframework.

36

8 Simulation Instrumentation using
Monitor Repository Models

As has been outlined in the previous chapters, QuAL allows for flexible collection of
metric measurements in Palladio analyses. By design, the simulator SimuCom and
the analytical evaluations have collected and persisted measurements for a fixed
set of measurement types, like the aggregate CPU utilization, or total response
time of Usage Scenarios. While this does not require effort for specifying desired
measured metrics, it comes at the disadvantage of having to collect all measure-
ments for the predefined types. The Monitor Repository model was introduced to
allow for a flexible definition of measurements to be collected and instrumented
in the simulation. It builds upon the EDP2 Measuring Point Model of QuAL.

Currently, only SimuLizar supports the flexible specification of simulation mon-
itoring points using the Monitor Repository model.

8.1 Monitor Repository Model

Figure 8.1 depicts the central elements of the Monitor Repository Model. A Moni-

tor Repository contains a set of Monitors. Each Monitor specifies an instrumented
Measuring Point. The Measuring Points are instances of EDP2’s Measuring Point
model. A Measuring Point represents the part of the system that is to be mon-

MonitorRepository

Monitor

activated : EBoolean = true

MeasurementSpecification

/name : EString
triggersSelfAdaptations : EBoolean = true

ProcessingType

MeasuringPoint

stringRepresentation : EString
resourceURIRepresentation : EString

MeasuringPointRepository

[1..1] monitorRepository

[0..*] monitors

[1..1] monitor

[1..*] measurementSpecifications

[1..1] measurementSpecification

[1..1] processingType

[1..1] measuringPoint

[0..*] measuringPoints

[1..1] measuringPointRepository

Figure 8.1: Overview of Monitor Repository Model

37

8. Simulation Instrumentation using Monitor Repository Models

itored. Measuring Points can be grouped in a MeasuringPointRepository. Every
Monitor can be activated or deactivated. Per Monitor, there exists a Measure-
mentSpecification that describes the collected Measurement. In case of analysis
tools like SimuLizar that support self-adaptations, triggersSelfAdaptations deter-
mines whether measurements should be passed as input to self-adaptation mecha-
nisms. If it is deactivated, measurements can be stored in the Recorder Frame-
work. In cases where it does not make sense to persist the aggregate metrics, a
realization of the measurement instrumentation defined in a Monitor might not
store the measurements in the Recorder Framework.

Every Measurement Specification has a Processing Type that defines how mea-
surements are to be collected and propagated from the Probe Framework to con-
nected analyses, such as SimuLizar’s self-adaptation mechanisms. Figure 8.2 pro-
vides an overview of supported Processing Specifications. FeedThrough defines
that a measurement recorded at the Monitor should directly be passed through
without further processing.

Aggregation subsumes Processing Types that aggregate measurements recorded
at Monitors. The definition of aggregation allows a flexible processing of results
similar to Kieker’s Pipes and Filters. TimeDriven are a Processing Type suitable
for measurement specifications that demand a sliding window, e.g., before being
recorded, but are not based on statistical aggregation. It extends Aggregation.
Examples for such measurement specifications are the window-based utilization
calculation or the power and energy calculation based thereof. windowLength
defines the length of the window, windowIncrement the increment with which the
interval is moved forward.

MeasurementDrivenAggregation specifies that a set of measurements should be
aggregated every numberOfMeasurements. VariableSizeAggregation aggregates all
measurements from the set of measurements restricted by a retrospection in-
terval of the length retrospectionlength. Measurements that are older than the
current measurement’s measuring time minus retrospectionLength are discarded.
FixedSizeAggregation aggregates the last numberOfMeasurements since the cur-
rent measurement, independent of the time at which they were measured.

Every Aggregation is processed using an extensible and exchangeable Statisti-
calCharacterization. As reference, the Monitor Repository model already supports
Geometric and Arithmetic Mean as well as Median. Additional Statistical Charac-
terizations can be supported by extending the model using Ecore’s Child Creation
Extender1 model feature.

8.2 Extending the Monitor Repository Model

The Monitor Repository model has been built to be extensible by design. This
section discusses the two main extension scenarios, namely adding support for
new aggregate functions and new aggregation processing types.

1http://ed-merks.blogspot.de/2008/01/creating-children-you-didnt-know.html

38

http://ed-merks.blogspot.de/2008/01/creating-children-you-didnt-know.html

8.3 Adding Custom Processing Types

8.2.1 Adding Statistical Characterizations

As explained in the previous section, StatisticalCharacterization can be extended
to support further aggregation functions. To implement a custom aggregator, a
subclass of StatisticalCharacterization needs to be realized in an extension model.

1 return new org.palladiosimulator.monitorrepository.

statisticalcharacterization.GeometricMeanAggregator(

expectedDataMetric);

Listing 8.1: Body value of the GeometricMean’s getAggregator() implementation

StatisticalCharacterization defines the getAggregator() function. An implement-
ing subclass needs to override this method. In the model, this is achieved by adding
a GenModel annotation to the method with the key set to the method body. The
value of the annotation should create an instance of the actual implementation of
the StatisticalCharacterizationAggregator. Listing 8.1 shows the getAggregator()
method body of GeometricMean.

expectedDataMetric is the metric characterizing the resulting aggregate.

8.3 Adding Custom Processing Types

Beyond custom aggregation function, Monitor Repository also supports the intro-
duction of custom Processing Types. This allows for an implementation of custom
filters, e.g., to support a pipeline-based processing of results. This section dis-
cusses an extension of the existing Processing Types by a generic Map function.
The added Processing Type supports the specification of a mapping, i.e., some
sort of transformation function that shall be applied to every measurement. The
source code for the plugin can be found in the Palladio SVN2.

Figure 8.3 depicts a model overview of the Map function extension. Map applies
the mapping function of a set Mapper to an input Measuring Value. The mapping
function hereby is a Java UnaryOperator. An example Mapping function realized
as part of the model is the Exponential Smoothing function, that is, e.g., used
by the Linux kernel to calculate CPU utilization metrics. The following listing
contains the body of Exponential Smoothing’s getMappingFunction().

1 return (input) -> {

2 org.palladiosimulator.metricspec.

NumericalBaseMetricDescription expectedMetric = (org

.palladiosimulator.metricspec.

NumericalBaseMetricDescription) getMap ()

3 .getOutputMetricDescription ();

4 javax.measure.unit.Unit <Quantity > unit = expectedMetric.

getDefaultUnit ();

5 double value = input.getMeasureForMetric(expectedMetric)

.doubleValue(unit);

2https://svnserver.informatik.kit.edu/i43/svn/code/MonitorRepository/trunk/org.

palladiosimulator.monitorrepository.map/

39

https://svnserver.informatik.kit.edu/i43/svn/code/MonitorRepository/trunk/org.palladiosimulator.monitorrepository.map/
https://svnserver.informatik.kit.edu/i43/svn/code/MonitorRepository/trunk/org.palladiosimulator.monitorrepository.map/

8. Simulation Instrumentation using Monitor Repository Models

6 Measure <?, javax.measure.quantity.Duration > time = input

.getMeasureForMetric(

7 org.palladiosimulator.metricspec.constants.

MetricDescriptionConstants.

POINT_IN_TIME_METRIC);

8 double oldValue = getSmoothedValue () == null ? 0d :

getSmoothedValue ().doubleValue(unit);

9 setSmoothedValue(

10 Measure.valueOf(oldValue * (1 -

getSmoothingFactor ()) + value *

getSmoothingFactor (), unit));

11 return new org.palladiosimulator.measurementframework.

TupleMeasurement(

12 (org.palladiosimulator.metricspec.

MetricSetDescription) input.

getMetricDesciption (), time ,

13 getSmoothedValue ());

14 };

Listing 8.2: Body value of the ExponentialSmoothing’s getMappingFunction()

The smoothing function applies a exponentially weighted moving average to a
measurement input. It outputs the smoothed value for the point in time of the
last incoming measurements.

Since the base Monitor Repository model does not contain Map functions, the
analysis also needs to be extended to support registering Mapping functions. Sec-
tion 9.1 explains how extensions to the monitoring and measurement logic can be
realized for SimuLizar.

40

8.3 Adding Custom Processing Types

St
at

is
tic

al
Ch

ar
ac

te
riz

at
io

n

ge
tA

gg
re

ga
to

r(e
xp

ec
te

dD
at

aM
et

ric

N
um

er
ic

al
Ba

se
M

et
ric

D
es

cr
ip

tio
n)

 :
St

at
ist

ic
al

Ch
ar

ac
te

riz
at

io
nA

gg
re

ga
to

r

Ar
ith

m
et

ic
M

ea
n

ge
tA

gg
re

ga
to

r(e
xp

ec
te

dD
at

aM
et

ric

N
um

er
ic

al
Ba

se
M

et
ric

D
es

cr
ip

tio
n)

 :
St

at
ist

ic
al

Ch
ar

ac
te

riz
at

io
nA

gg
re

ga
to

r

H
ar

m
on

ic
M

ea
n

ge
tA

gg
re

ga
to

r(e
xp

ec
te

dD
at

aM
et

ric

N
um

er
ic

al
Ba

se
M

et
ric

D
es

cr
ip

tio
n)

 :
St

at
ist

ic
al

Ch
ar

ac
te

riz
at

io
nA

gg
re

ga
to

r

Ge
om

et
ric

M
ea

n

ge
tA

gg
re

ga
to

r(e
xp

ec
te

dD
at

aM
et

ric

N
um

er
ic

al
Ba

se
M

et
ric

D
es

cr
ip

tio
n)

 :
St

at
ist

ic
al

Ch
ar

ac
te

riz
at

io
nA

gg
re

ga
to

r

M
ed

ia
n

ge
tA

gg
re

ga
to

r(e
xp

ec
te

dD
at

aM
et

ric

N
um

er
ic

al
Ba

se
M

et
ric

D
es

cr
ip

tio
n)

 :
St

at
ist

ic
al

Ch
ar

ac
te

riz
at

io
nA

gg
re

ga
to

r

Pr
oc

es
si

ng
Ty

pe

Ag
gr

eg
at

io
n

M
ea

su
re

m
en

tD
riv

en
Ag

gr
eg

at
io

n

fr
eq

ue
nc

y
: E

In
t =

 1 Fi
xe

dS
ize

Ag
gr

eg
at

io
n

nu
m

be
rO

fM
ea

su
re

m
en

ts
 :

EI
nt

 =
 1

0

Ti
m

eD
riv

en
Ag

gr
eg

at
io

n

Ti
m

eD
riv

en

w
in

do
w

Le
ng

th
 :

ED
ou

bl
e

=
10

.0
w

in
do

w
In

cr
em

en
t :

 E
D

ou
bl

e
=

10
.0

ge
tW

in
do

w
Le

ng
th

As
M

ea
su

re
()

: E
JS

M
ea

su
re

ge
tW

in
do

w
In

cr
em

en
tA

sM
ea

su
re

()
: E

JS
M

ea
su

re

Va
ria

bl
eS

ize
Ag

gr
eg

at
io

n

re
tr

os
pe

ct
io

nL
en

gt
h

: E
D

ou
bl

e
=

10

.0
ge

tR
et

ro
sp

ec
tio

nL
en

gt
hA

sM
ea

su
re

()
 :

EJ
SM

ea
su

re

Fe
ed

Th
ro

ug
h

[1
..1

] s
ta

tis
tic

al
Ch

ar
ac

te
riz

at
io

n

Figure 8.2: Processing Types supported by Monitor Repository 41

8. Simulation Instrumentation using Monitor Repository Models

Map

apply(newMeasurement
MeasuringValue) : MeasuringValue

Mapper

getMappingFunction() : Func

ExponentialSmoothing

smoothingFactor : EDouble = 0.5
smoothedValue : EJSMeasure
getMappingFunction() : Func
isMetricNumericalBaseMetric(chain EDiagnosticChain, context EMap) : EBoolean

ProcessingType

Func

java.util.function.UnaryOperator

MeasuringValue

org.palladiosimulator.measurementframework.MeasuringValue

TupleMeasurement

org.palladiosimulator.
measurementframework.
TupleMeasurement

[0..1] map [0..1] mapper

Figure 8.3: Map Function extension

42

9 Extensible Monitoring in SimuLizar

Initially, SimuLizar had supported a set of predefined measurement types such as
response times, or aggregate CPU utilization. In order to support the extension of
SimuLizar to additional metric measurements such as power consumption or the
Mapping functions discussed in Section 8.3, a set of extension points have been
added. An extension may register itself to the extension point via Eclipse’s exten-
sion point mechanism1. This chapter provides an overview of extension points for
monitoring and measurement processing in SimuLizar.

9.1 Extending Measurements recorded by the Probe
Framework

The extension point org.palladiosimulator.simulizar.interpreter.listener.
probeframework can be used by SimuLizar extensions to record additional mea-
surements by means of a ProbeFrameworkListener. Any extending plugin must ex-
tend the abstract class AbstractRecordingProbeFrameworkListenerDecorator. Be-
fore starting a simulation run, SimuLizar registers its main ProbeFrameworkLis-
tener with the extension by calling

1 setProbeFrameworkListener(final AbstractProbeFrameworkListener

probeFrameworkListener)}

Once the SimuLizar analysis setup has set the decorated listener, the analysis
setup calls registerMeasurements() to register any measurements contributed by
the SimuLizar extension.

An example extension that contributes measurements to SimuLizar via the
Probe Framework extension point is org.palladiosimulator.simulizar.aggregation.
Aggregation is responsible for handling the correct registration of measurements
collected for FixedSizeAggregation and VariableSizeAggregation of the Monitor Repos-

itory model. For an explanation of the aggregation functions refer to Section 8.1.
The method is responsible for registering the aggregation calculators with the
Probe framework. Aggregation measurements are only set up when isTriggers-
SelfAdaptations has been set for the Monitor of the aggregator. The aggrega-
tion measurements are propagated to the Palladio Runtime Measurement that
SimuLizar exposes to reconfiguration mechanisms.

1http://www.vogella.com/tutorials/EclipseExtensionPoint/article.html

43

http://www.vogella.com/tutorials/EclipseExtensionPoint/article.html

9. Extensible Monitoring in SimuLizar

The SimuLizar Power extension org.palladiosimulator.simulizar.power2 is an-
other example of an extension that leverages the Probe Framework extension
point. Unlike the Aggregation extension point, it also registers the collected Power
and Energy metric measurements to be propagated to the Recorder framework.

The custom Aggregation Processing Type discussed in Section 8.3 is also added
to SimuLizar’s measurement infrastructure via the Probe Framework extension
point. The MonitorRepositoryMapProbeFrameworkListenerDecorator of
org.palladiosimulator.simulizar.monitorrepository.map adds Probe Framework cal-
culators that apply the Mapping function to the measurements collected at the
Measuring Point of the aggregating Monitor.

9.2 Dynamic Extension of Measurements with a Model
Observer

SimuLizar supports the analysis of self-adaptive software systems. It is not possi-
ble to register all measurements in a self-adaptive system prior to the execution of
the analysis. If, for example, a scale-out occurs in a horizontally scalable applica-
tion, one might want to collect response time measurements for the newly launched
component instance. The Probe Framework Measurement extension discussed in
Section 9.1 is well suited for registering additional measurements during the setup
of an analysis run. This works well for additional measurements that are known
at the time a SimuLizar analysis is started. However, it does not support the
dynamic registration of additional measurements. Dynamic registration and de-
registration of metric measurement collection in SimuLizar can be realized via the
org.palladiosimulator.simulizar.modelobserver extension point.

Extensions registering to the extension point have to implement the IModelOb-
server interface:

1 public interface IModelObserver {

2
3 public void initialize(final AbstractSimuLizarRuntimeState

runtimeState);

4
5 public void unregister ();

6
7 }

Listing 9.1: IModelObserver interface used to register a SimuLizar model observer

The abstract class AbstractModelObserver extends the IModelObserver inter-
face and implements the most commonly used model observing code. It is recom-
mended to extend this class when implementing dynamic measurement extensions.
An AbstractModelObserver listens to changes on a specific set of models analyzed
by SimuLizar. It is notified whenever changes of a predefined subset occur (see

2https://svnserver.informatik.kit.edu/i43/svn/code/Palladio/Incubation/SimuLizar/

trunk/org.palladiosimulator.simulizar.power/

44

https://svnserver.informatik.kit.edu/i43/svn/code/Palladio/Incubation/SimuLizar/trunk/org.palladiosimulator.simulizar.power/
https://svnserver.informatik.kit.edu/i43/svn/code/Palladio/Incubation/SimuLizar/trunk/org.palladiosimulator.simulizar.power/

9.2 Dynamic Extension of Measurements with a Model Observer

EMF’s org.eclipse.emf.common.notify.Notification). In order to react to a specific
change event, such as Notification.ADD, one has to override the respective method
of AbstractModelObserver. For Notification.ADD, this method is void add(final

Notification notification).
An example for dynamic registration of Probes in SimuLizar is the Response

Time Monitor3. The Response Time Monitor allows to register additional response
time measurements with the Probe framework during a SimuLizar analysis run.
The Response Time Monitor listens to changes on the Monitor Repository model.
If a new response time Monitor is added to the Repository as the result of an
adaptation, the Response Time Monitor registers a response time Recorder with
the Recorder framework. The extension also deregisters Recorders if a response
time Monitor is removed from the model.

3https://github.com/cactos/Cactos-Prediction/tree/master/org.palladiosimulator.

simulizar.responsetimemonitor

45

https://github.com/cactos/Cactos-Prediction/tree/master/org.palladiosimulator.simulizar.responsetimemonitor
https://github.com/cactos/Cactos-Prediction/tree/master/org.palladiosimulator.simulizar.responsetimemonitor

10 UI Framework

The UI Framework allows to create visualizations of recorder measurements. These
visualizations can be XY plots and histograms like shown in Fig. 1.2 and Fig. 1.3;
but also pie charts or arbitrary custom visualizations are possible. The UI Frame-
work comes as a part of EDP2 and directly supports a generic visualization of
measurements stored within EDP2 recorders.

Currently, we do not provide further documentation for the UI Framework and
directly refer to the code available within the org.palladiosimulator.edp2.visualization

plug-in.

46

11 Experiment Automation Framework

Experiments allow to conduct a series of analyzer runs and to aggregate recorded
measurements to new measurements (so-called experiment reports). For example,
an experiment can repeat an analyzer run for ten times. The variance over these
runs can be reported, indicating the statistical significance of these analyzer runs.
Another example is to conduct the same analysis using different analyzers and to
report on the analysis time per analyzer.

Palladio’s “Experiment Automation Framework” adds support for such exper-
iments. Experiment Automation Framework allows to specify analyzer configu-
rations, to run analyzers, and to store experiment reports based on investigating
analyzer measurements within recorders. In particular, the framework provides
extension points for adding custom analyzers and for hooking-in the normal Ex-
periment Automation workflow.

In this chapter, we first overview the Experiment Automation workflow (Sec. 11.1).
Second, we detail the two extension scenarios to Experiment Automation men-
tioned above: adding support for custom analyzers (Sec. 11.2) and hooking-in to
the normal Experiment Automation workflow (Sec. 11.3).

11.1 The Experiment Automation Workflow

Figure 11.1 overviews the Experiment Automation Workflow. Each action of the
activity diagrams is realized as a dedicated job of Palladio’s Workflow Engine (the
“Handle Job Extensions” action is an exception; it is an extension point for adding
custom jobs). Colors are used for linking calls to sequential jobs and associated
activity diagrams that illustrate the inner jobs of these. White actions illustrate
non-sequential jobs and therefore have no inner jobs.

11.2 Adding Support for Custom Analyzers

Custom analyzers need to:

• extend the org.palladiosimulator.experimentautomation.application.tooladapter exten-
sion point and

• provide a metamodel with a metaclass that extends AbstractSimulationCon-

figuration; a metaclass of the metamodel that comes with the Experiment
Automation Framework. Instances of the new metamodel can then be used
for configuring Experiment Automation runs.

47

11. Experiment Automation Framework

RunExperimentAutomationJob

«iterate»
co

nfi
gu

ra
tio

n
.e

xp
er

im
en

ts LoadModels
IntoBlackboard

Job

experiment.initialModel

Handle
Job

Extensions

configuration

RunExperiment-
ForEachTool-

Job

experiment
co

nfi
gu

ra
tio

n

RunExperimentAutomationJob

«iterate»

ex
pe

rim
en

t
.to

ol
C

on
fig

ur
at

io
n

ComputeVariantsAndAddExperimentJob

experiment, toolConfigurationex
pe

rim
en

t

ComputeVariantsAndAddExperimentJob

«iterate»

co
m

pu
te

Va
ria

tio
ns

-
An

dF
ac

to
rs

(e
xp

er
im

en
t)

VaryJob

variationsAndFactorsex
pe

rim
en

t,
to

ol
C

on
fig

ur
at

io
n

RepeatExperimentJob

experiment, toolConfiguration, variationsAndFactors

RepeatExperimentJob

«iterate»

ex
pe

rim
en

t
.re

pe
tit

io
ns

RunExperimentJob

experiment, toolConfiguration, variationsAndFactors, repetitionex
pe

rim
en

t,
to

ol
C

on
fig

ur
at

io
n,

va
ria

tio
ns

An
dF

ac
to

rs

RunExperimentJob

RunAnalysisJob AddDynamicVariationJob

ex
pe

rim
en

t,
to

ol
C

on
fig

ur
at

io
n,

va
ria

tio
ns

An
dF

ac
to

rs
,

re
pe

tit
io

n

computeRunAnalysisJobConfiguration(…)

runAnalysisJob, analysisTool, experiment,
toolConfiguration, variationsAndFactors, repetition

Prepare-
Blackboard-

Job

Figure 11.1: Overview of the Experiment Automation Workflow. Each action of
the activity diagrams is realized as a dedicated job of Palladio’s Work-
flow Engine (the “Handle Job Extensions” action is an exception; it is
an extension point for adding custom jobs). Colors are used for link-
ing calls to sequential jobs and associated activity diagrams that illus-
trate the inner jobs of these. White actions illustrate non-sequential
jobs and therefore have no inner jobs.

48

11.3 Hooking-in to the Experiment Automation Workflow

Example for currently existing Analyzers are the following:

• SimuCom: org.palladiosimulator.experimentautomation.application.tooladapter.simucom

• SimuLizar: org.palladiosimulator.experimentautomation.application.tooladapter.simulizar

Please refer to these examples if you want to add your own Analyzer.
Note that the configuration of Analyzers within experiment models is currently

tricky because it needs to be done directly within the XMI file. The generated
tree editor for experiment models does not yet support editing of subclasses of
AbstractSimulationConfiguration. Therefore, instances of these subclasses have to be
copied to the appropriate place in the XMI file. Please have a look at the XMI
representation of any example experiment model to learn about the configuration
of custom Analyzers.

11.3 Hooking-in to the Experiment Automation Workflow

Custom jobs that wat to hook-in to the Experiment Automation Workflow need
to:

• extend the de.uka.ipd.sdq.workflow.job extension point by referencing the work-

flow.extension.experimentautomation.before.experimentrun workflow ID as a hook-
in point.

This extension is realized by the “Handle Job Extensions” action in Fig. 11.1.
Refer to org.scaledl.architecturaltemplates.completion.jobs as an example for such an
extension.

49

Bibliography

[1] Matthias Becker, Steffen Becker, and Joachim Meyer. “SimuLizar: Design-
Time Modelling and Performance Analysis of Self-Adaptive Systems.” In:
Proceedings of Software Engineering 2013 (SE2013), Aachen. 2013.

[2] Steffen Becker. “Coupled model transformations for QoS enabled component-
based software design.” http://d-nb.info/989923983. PhD thesis. Carl von
Ossietzky University of Oldenburg, 2008, pp. 1–262. isbn: 978-3-86644-271-
9. url: http://docserver.bis.uni- oldenburg.de/publikationen/

dissertation/2008/beccou08/beccou08.html.

[3] Steffen Becker, Heiko Koziolek, and Ralf Reussner. “The Palladio component
model for model-driven performance prediction.” In: Journal of Systems and
Software 82.1 (Jan. 2009), pp. 3–22. issn: 0164-1212. doi: 10.1016/j.jss.
2008.03.066. url: http://www.sciencedirect.com/science/article/
pii/S0164121208001015 (visited on 11/07/2012).

[4] André van Hoorn, Jan Waller, and Wilhelm Hasselbring. “Kieker: A Frame-
work for Application Performance Monitoring and Dynamic Software Anal-
ysis.” In: Proceedings of the 3rd ACM/SPEC International Conference on
Performance Engineering (ICPE 2012). Boston, Massachusetts, USA, April
22–25, 2012: ACM, Apr. 2012, pp. 247–248. isbn: 978-1-4503-1202-8.

[5] Jean-Marie Dautelle. JScience. 2014. url: http://jscience.org/.

[6] Sebastian Lehrig and Thomas Zolynski. “Performance Prototyping with Pro-
toCom in a Virtualised Environment: A Case Study.” In: Proceedings to Pal-
ladio Days 2011, 17-18 November 2011, FZI Forschungszentrum Informatik,
Karlsruhe, Germany. 2011.

[7] Philipp Merkle and Jörg Henß. “EventSim – An Event-driven Palladio Soft-
ware Architecture Simulator.” In: Proceedings to Palladio Days 2011, 17-18
November 2011, FZI Forschungszentrum Informatik, Karlsruhe, Germany.
2011.

50

http://docserver.bis.uni-oldenburg.de/publikationen/dissertation/2008/beccou08/beccou08.html
http://docserver.bis.uni-oldenburg.de/publikationen/dissertation/2008/beccou08/beccou08.html
http://dx.doi.org/10.1016/j.jss.2008.03.066
http://dx.doi.org/10.1016/j.jss.2008.03.066
http://www.sciencedirect.com/science/article/pii/S0164121208001015
http://www.sciencedirect.com/science/article/pii/S0164121208001015
http://jscience.org/

	1 Introduction
	1.1 Running Example: The Alice&Bob System
	1.2 Overview of the Quality Analysis Lab
	1.2.1 Data Specification: Metrics & Measurements
	1.2.2 Data Flow: Metric Measurements in Palladio Analyses

	1.3 Analyses: Structural Viewpoint of Dependencies
	1.4 Analyses: Interaction Viewpoint
	1.5 Document Structure

	2 Metric Specification Framework
	2.1 Meta Classes of the Metric Specification Framework
	2.2 Library of Common Metric Descriptions
	2.3 Custom Metric Descriptions

	3 Measurement Framework
	3.1 Measure Providers and Measurements
	3.2 Measurement Sources and Listeners
	3.3 Custom Measures

	4 Analyzer Framework
	5 Probe Framework
	5.1 Probes and Calculators
	5.1.1 Probe Types
	5.1.2 Calculator Types

	5.2 Using Probes and Calculators
	5.2.1 Using an "Example Take Current Time Probe"
	5.2.2 Using a "Response Time Calculator"
	5.2.3 Further Examples on Using Probes and Calculators

	5.3 Custom Probes and Calculators
	5.3.1 Creating an "Example Take Current Time Probe"
	5.3.2 Further Examples on Creating Probes and Calculators

	6 Kieker Framework
	7 Recorder Framework
	7.1 Recorders and Recorder Configurations
	7.1.1 Recorders
	7.1.2 Recorder Configurations

	7.2 Example: the Experiment Data Persistency & Presentation (EDP2) Recorder
	7.3 Custom Recorders and Extension Points

	8 Simulation Instrumentation using Monitor Repository Models
	8.1 Monitor Repository Model
	8.2 Extending the Monitor Repository Model
	8.2.1 Adding Statistical Characterizations

	8.3 Adding Custom Processing Types

	9 Extensible Monitoring in SimuLizar
	9.1 Extending Measurements recorded by the Probe Framework
	9.2 Dynamic Extension of Measurements with a Model Observer

	10 UI Framework
	11 Experiment Automation Framework
	11.1 The Experiment Automation Workflow
	11.2 Adding Support for Custom Analyzers
	11.3 Hooking-in to the Experiment Automation Workflow

	Bibliography

